您好,欢迎来到华佗小知识。
搜索
您的当前位置:首页自适应噪声抵消

自适应噪声抵消

来源:华佗小知识
ActiveNoiseControl:ATutorialReview

SENM.KUOANDDENNISR.MORGAN,SENIORMEMBER,IEEE

Activenoisecontrol(ANC)isachievedbyintroducingacancel-ing“antinoise”wavethroughanappropriatearrayofsecondarysources.Thesesecondarysourcesareinterconnectedthroughanelectronicsystemusingaspecificsignalprocessingalgorithmfortheparticularcancellationscheme.ANChasapplicationtoawidevarietyofproblemsinmanufacturing,industrialoperations,andconsumerproducts.TheemphasisofthispaperisonthepracticalaspectsofANCsystemsintermsofadaptivesignalprocessinganddigitalsignalprocessing(DSP)implementationforreal-worldapplications.

Inthispaper,thebasicadaptivealgorithmforANCisdevelopedandanalyzedbasedonsingle-channelbroad-bandfeedforwardcontrol.Thisalgorithmisthenmodifiedfornarrow-bandfeedfor-wardandadaptivefeedbackcontrol.Inturn,thesesingle-channelANCalgorithmsareexpandedtomultiple-channelcases.Variousonlinesecondary-pathmodelingtechniquesandspecialadap-tivealgorithms,suchaslattice,frequency-domain,subband,andrecursive-least-squares,arealsointroduced.Applicationsofthesetechniquestoactualproblemsarehighlightedbyseveralexamples.Keywords—Activenoisecontrol,activevibrationcontrol,adap-tivenoisecancellation,adaptivesystems,digitalsignalprocessing(DSP)applications.

I.INTRODUCTION

A.Overview

Acousticnoiseproblemsbecomemoreandmoreevidentasincreasednumbersofindustrialequipmentsuchasengines,blowers,fans,transformers,andcompressorsareinuse.Thetraditionalapproachtoacousticnoisecontrolusespassivetechniquessuchasenclosures,barriers,andsilencerstoattenuatetheundesirednoise[1],[2].Thesepassivesilencersarevaluedfortheirhighattenuationoverabroadfrequencyrange;however,theyarerelativelylarge,costly,andineffectiveatlowfrequencies.Mechanicalvibrationisanotherrelatedtypeofnoisethatcommonlycreatesproblemsinallareasoftransportationandmanu-facturing,aswellaswithmanyhouseholdappliances.Activenoisecontrol(ANC)[3]–[6]involvesanelec-troacousticorelectromechanicalsystemthatcancelstheprimary(unwanted)noisebasedontheprincipleofsuper-position;specifically,anantinoiseofequalamplitudeand

ManuscriptreceivedJune1,1997;revisedDecember18,1998.

S.M.KuoiswiththeDepartmentofElectricalEngineering,NorthernIllinoisUniversity,DeKalb,IL60115USA.

D.R.MorganiswithBellLaboratories,LucentTechnologies,MurrayHill,NJ07974-0636USA.

PublisherItemIdentifierS0018-9219(99)04043-8.

oppositephaseisgeneratedandcombinedwiththeprimarynoise,thusresultinginthecancellationofbothnoises.TheANCsystemefficientlyattenuateslow-frequencynoisewherepassivemethodsareeitherineffectiveortendtobeveryexpensiveorbulky.ANCisdevelopingrapidlybecauseitpermitsimprovementsinnoisecontrol,oftenwithpotentialbenefitsinsize,weight,volume,andcost.ThedesignofacousticANCutilizingamicrophoneandanelectronicallydrivenloudspeakertogenerateacancelingsoundwasfirstproposedina1936patentbyLueg[7].Sincethecharacteristicsoftheacousticnoisesourceandtheenvironmentaretimevarying,thefrequencycontent,amplitude,phase,andsoundvelocityoftheundesirednoisearenonstationary.AnANCsystemmustthereforebeadaptiveinordertocopewiththesevariations.Adaptivefilters[8]–[16]adjusttheircoefficientstominimizeanerrorsignalandcanberealizedas(transversal)finiteimpulseresponse(FIR),(recursive)infiniteimpulseresponse(IIR),lattice,andtransform-domainfilters.Themostcommonformofadaptivefilteristhetransversalfilterusingtheleast-mean-square(LMS)algorithm.Anearlyductcancellationsystembasedonadaptivefiltertheorywasdevelopedin[17]and[18].

Itisdesirableforthenoisecancelertobedigital[19],[20],wheresignalsfromelectroacousticorelectromechani-caltransducersaresampledandprocessedinrealtimeusingdigitalsignalprocessing(DSP)systems.Inthe1980’s,de-velopmentofDSPchipsenabledlow-costimplementationofpowerfuladaptivealgorithms[21]andencouragedwide-spreaddevelopmentandapplicationofANCsystems[22].ThecontinuousprogressofANCinvolvesthedevelopmentofimprovedadaptivesignalprocessingalgorithms,trans-ducers,andDSPhardware.Moresophisticatedalgorithmsallowfasterconvergenceandgreaternoiseattenuationandaremorerobusttointerference.ThedevelopmentofimprovedDSPhardwareallowsthesemoresophisticatedalgorithmstobeimplementedinrealtimetoimprovesystemperformance.

Inthispaper,noiseisdefinedasanykindofundesirabledisturbance,whetheritisbornebyelectrical,acoustic,vibration,oranyotherkindofmedia.Therefore,ANCalgorithmsintroducedinthispapercanbeappliedtodifferenttypesofnoiseusingappropriatesensorsandsecondarysources.Forelectricalengineersinvolvedinthe

0018–9219/99$10.00©1999IEEE

PROCEEDINGSOFTHEIEEE,VOL.87,NO.6,JUNE1999

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

943

developmentofANCsystems,[3],[5],and[6]provideexcellentintroductiontoacousticsandvibration.B.CurrentApplications

ANCisanattractivemeanstoachievelargeamountsofnoisereductioninasmallpackage,particularlyatlowfrequencies.ManyapplicationsofANCinvolvingrealandsimulatedexperimentsareintroducedin[4].CurrentapplicationsforANCincludeattenuationofunavoidablenoiseinthefollowingendequipment.

1)Automotive:Includingelectronicmufflersforexhaustandinductionsystems,noiseattenuationinsidevehiclepassengercompartments,activeenginemounts,andsoon.2)Appliances:Includingair-conditioningducts,airconditioners,refrigerators,kitchenexhaustfans,washingmachines,furnaces,dehumidifiers,lawnmowers,vacuumcleaners,headboards,roomisolation,andsoon.

3)Industrial:Fans,airducts,chimneys,transformers,powergenerators,blowers,compressors,pumps,chainsaws,windtunnels,noisyplants(atnoisesourcesormanylocalquietzones),publicphonebooths,officecubiclepartitions,earprotectors,headphones,andsoon.

4)Transportation:Airplanes,ships,boats,pleasuremo-torboats,helicopters,snowmobiles,motorcycles,diesello-comotives,andsoon.

C.PerformanceEvaluationandPracticalConsiderationsWhenANCisdeployedinrealapplications,manyprac-ticalproblemsariseandneedtobeaddressed[23].Anap-proachtoadaptiveANCperformanceanalysisthatinvolvesahierarchyoftechniques,startingwithanidealsimplifiedproblemandprogressivelyaddingpracticalconstraintsandothercomplexities,isessential[24].Performanceanalysisresolvesthefollowingissues:1)thefundamentalperfor-mancelimitations;2)thepracticalconstraintsthatlimitperformance;3)performancebalancedagainstcomplexity;and4)howtodetermineapracticaldesignarchitecture.Ateachstep,adegreeofconfidenceisgainedandabenchmarkisestablishedforcomparisonandcrosscheckingwiththenextlevelofcomplexity.

Inordertobesuitableforindustrialuse,theANCsystemmusthavecertainproperties[25]:1)maximumefficiencyoverthelargestfrequencybandpossibletocancelawiderangeofnoise;2)autonomywithregardtotheinstallation,sothatthesystemcouldbebuiltandpresetinthemanufacturingareaandtheninsertedonsite;3)selfadaptabilityofthesysteminordertodealwithanyvariationsinthephysicalparameters(temperature,airflowspeed,etc.);and4)robustnessandreliabilityofthedifferentelementsofthesystemandsimplificationofthecontrolelectronics.

D.PaperOutline

ANCisbasedoneitherfeedforwardcontrol,whereacoherentreferencenoiseinputissensedbeforeitpropagatespastthesecondarysource,orfeedbackcontrol[26],[27],wheretheactivenoisecontrollerattemptstocancelthe

944

Fig.1.Single-channelbroad-bandfeedforwardANCsysteminaduct.

noisewithoutthebenefitofan“upstream”referenceinput.StructuresforfeedforwardANCareclassifiedinto1)broad-bandadaptivefeedforwardcontrolwithareferencesensor,whichwillbediscussedinSectionII,and2)narrow-bandadaptivefeedforwardcontrolwithareferencesensorthatisnotinfluencedbythecontrolfield(e.g.,tachometer),whichwillbepresentedinSectionIII.InSectionIV,theconceptofadaptivefeedbackANCwillbedevelopedfromthestandpointofreferencesignalsynthesis,therebyprovidingalinktothefeedforwardsystemsinprevioussections.InSectionV,thesesingle-channelANCsystemswillbeexpandedtomultiple-channelcases.SectionVIwillintro-ducevariousonlinesecondary-pathmodelingtechniques.SectionVIIwillintroducevariousspecialANCalgorithmssuchaslatticeANC,frequency-domainANC,subbandANC,andrecursive-least-squares(RLS).Finally,severalexamplesapplyingANCtoreal-worldproblemswillbehighlightedinSectionVIII.

II.BROAD-BANDFEEDFORWARDANC

Thissectionconsidersbroad-bandfeedforwardANCsystemsthathaveasinglereferencesensor,singlesec-ondarysource,andsingleerrorsensor.Thisgenrewillbeexemplifiedbythesingle-channelduct-acousticANCsystemshowninFig.1,wherethereferenceinputispickedupbyamicrophone.ThereferencesignalisprocessedbytheANCsystemtogeneratethecontrolsignaltodrivealoudspeaker.TheerrormicrophoneisusedtomonitortheperformanceoftheANCsystem.Theobjectiveofthecontrolleristominimizethemeasuredacousticnoise.Notethatthissetupisonlyusedasanexampleofbroad-bandANC;thegeneraltechniquesarewidelyapplicabletoavarietyofacousticandvibrationproblems.

A.BasicPrinciples

Thebasicbroad-bandANCsystemshowninFig.1isdescribedinanadaptivesystemidentificationframework

isillustratedinFig.2,inwhichanadaptivefilter

usedtoestimateanunknownplant

consistsoftheacousticresponsefromthereferencesensortotheerrorsensorwherethenoiseattenuationistoberealized.Iftheplantisdynamic,theadaptivealgorithmthenhasthetaskofcontinuouslytrackingtimevariationsoftheplantdynamics.ThemostimportantdifferencebetweenFig.2andthetraditionalsystemidentificationschemeistheuseofanacousticsummingjunctioninsteadofthesubtractionofelectricalsignals.However,forconsistency

PROCEEDINGSOFTHEIEEE,VOL.87,NO.6,JUNE1999

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

Fig.2.SystemidentificationviewpointofANC.

wewillcontinuetorepresentthesummingjunctionbyasubtraction;itisreallyarbitraryanywaybecauseitcanbeimplementedwithasignchangeofthesecondarysignal[4].

istominimizeTheobjectiveoftheadaptivefilter

theresidualerrorsignalaftertheadaptivefilterconverges.Wethenhave

for

isidenticalandtotheprimarydisturbance

areacousticallycombined,theresidualerroris

from

to

-transformoftheerrorsignalis

isgivenby[4]

(1)

isthemagnitude-squaredcoherencefunctionwhere

[28]betweentwowide-sensestationaryrandomprocesses

andistheautopowerspectrumof

Thisrequires

].

torealizetheoptimaltransferfunction

and

hastosimulta-neouslymodel

indecibelsisgivenby

shown

in(3).Itisimpossibletocompensatefortheinherentdelay

doesnotcontainadueto

delayofatleastequallength.

C.Filtered-XLMSAlgorithm

Theintroductionofthesecondary-pathtransferfunctionintoacontrollerusingthestandardLMSalgorithmshowninFig.3willgenerallycauseinstability[30].Thisisbecausetheerrorsignalisnotcorrectly“aligned”intimewith

KUOANDMORGAN:ACTIVENOISECONTROL

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

945

thereferencesignal,duetothepresenceof

toremoveitseffect.ThesecondsolutionistoplaceanidenticalfilterinthereferencesignalpathtotheweightupdateoftheLMSalgorithm,whichrealizestheso-calledfiltered-XLMS(FXLMS)algorithm[9].Sinceaninversedoesnotnecessarilyexistfor

Fig.4.BlockdiagramofANCsystemusingtheFXLMSalgo-rithm.

controlledbytheLMSalgorithmisshownin

Fig.3.Theresidualsignalisexpressedas

isthetimeindex,istheimpulseresponseof

denoteslinearconvolution,secondarypath

and

arethecoefficientandsignalvectors

isthefilterorder.Thefilterof

mustbeofsufficientordertoaccuratelymodeltheresponseofthephysicalsystem.

Assumingameansquarecostfunction

theadaptivefilterminimizestheinstantaneoussquarederror

(5)

usingthesteepestdescentalgorithm,whichupdatesthecoefficientvectorinthenegativegradientdirectionwithstepsize

(6)

isaninstantaneousestimateofthemean-where

square-error(MSE)gradientattime

,whereand

Fig.5.EquivalentdiagramofFig.4forslowadaptationand^(z)=S(z):S

whereistheestimatedimpulseresponseofthesecondary-pathfilter

bythefilter

ofphase

errorbetween

and

duringaninitialtraining

stageformostANCapplications.Thedetailedexperimentalsetupandprocedureforofflinesecondary-pathmodelingissummarizedin[4].Thetopicofadaptiveonlinesecondary-pathmodelingwillbediscussedlaterinSectionVI.

2)AnalysisoftheFXLMSAlgorithm:Considerthecase

ischangingslowly,soinwhichthecontrolfilter

andthattheorderof

through

issmall.

ThemaximumstepsizethatcanbeusedintheFXLMSalgorithmisapproximately[33]

isunknownand

mustbeestimatedbyanadditionalfilter

(9)

946

isthenumberofsamplescorresponding

PROCEEDINGSOFTHEIEEE,VOL.87,NO.6,JUNE1999

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

totheoveralldelayinthesecondarypath.Therefore,thedelayinthesecondarypathinfluencesthedynamicresponseoftheANCsystembyreducingthemaximumstepsizeintheFXLMSalgorithm.

Boucherandcoworkers[34],[35]discusstheeffectsofsecondarypathmodelingphaseerrorsontheoptimumstepsizeandconvergencetime.Theanalysisappliestothespecialcasewhenthereferencesignalisnarrow-bandbutthedisturbanceisstillbroadband.Numericresultssuggestthatphaseerrorsof40

[39]

(12)

where

(13)

where

becausethepolescomeclosertotheunitcircle.Fornarrow-bandsignals,errorsintheestimationofthesecondarypathtransferfunctioncanbeconsideredintwoparts:amplitudeerrorsandphaseerrors[36].Anymagnitudeestimationerrorwillproportionallychangethe

andhencewillsimplyscaletheidealpowerof

stabilityboundaccordingly.However,thereisnosimplerelationshipbetweenphasemodelingerrorandstabilityintherangeof

Anothercomplicationthatoftenarisesinthebroad-band

andarepresentcaseisthatmeasurementnoises

inthereferenceanderrorsignals,respectively.Theoptimalunconstrainedtransferfunction

thusrepresentsacompromise

betweenbiasingtheconvergenceweightvectorawayfromtheoptimumsolutionandmoderatingthecontroleffort.D.FeedbackEffectsandSolutions

TheacousticANCsystemshowninFig.1usesaref-erencemicrophonetopickupthereferencenoiseandprocessesthisinputwithanadaptivefiltertogeneratean

tocancelprimarynoiseacousticallyintheantisound

duct.Unfortunately,theantisoundoutputtotheloudspeakeralsoradiatesupstreamtothereferencemicrophone,result-inginacorruptedreferencesignal

isindependentofthe

associatedwiththeerrorsensor.measurementnoise

associatedwiththeHowever,themeasurementnoise

referencesensordoesaffecttheoptimumweightandhencereducesthecancellationperformance.Thebestfrequencyresponseofthecontrollerisacompromisebetweencan-andamplificationofcellationoftheprimarynoise

themeasurementnoisethroughthecontroller[25].Somepracticalconsiderationstoreduceundesiredmeasurementnoisearegivenin[4].

InFig.4,ifthesecondary-pathtransferfunction

noise,and

istheprimary

isthesignalpickedupbythereferencesensor,

and

isincloseagreementwithElliott’sapproximationgivenin(10).Therefore,effortsshouldbemadetokeepthedelaysmall,suchasdecreasingthedistancebetweentheerrorsensorandthesecondarysourceandreducingthedelayinelectricalcomponents.

3)LeakyFXLMSAlgorithm:InanANCsystem,thedi-rectapplicationoftheFXLMSalgorithmsometimesleadstoanotherproblem:highnoiselevelsassociatedwithlow-frequencyresonances,whichmaycausenonlineardistortionbyoverloadingthesecondarysource.Anobvioussolutiontothisproblemistheintroductionofoutputpowercon-straints.Similarresultscanbeobtainedbyconstrainingtheadaptivefilterweightsbymodifyingthecostfunctionas

KUOANDMORGAN:ACTIVENOISECONTROL

tothereferencesensor.The

steady-statetransferfunctionoftheadaptivefilteris[4]

hasconvergedtothenoiseless

optimalsolution(14),then

whiletheopen-loopgain

isgreaterthanunity.

947

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

Fig.6.BlockdiagramofANCsystemwithfeedback.

Fig.7.ANCwithacousticfeedbackneutralization.

1)FeedbackNeutralization:Thesimplestapproachtosolvingthefeedbackproblemistouseaseparatefeedbackcancellation,or“neutralization,”filterwithinthecontroller,whichisexactlythesametechniqueasusedinacousticechocancellation[43].Thiselectricalmodelofthefeedbackpathisdrivenbythesecondarysignal,anditsoutputissubtractedfromthereferencesensorsignal[44].Aduct-acousticANCsystemusingtheFXLMSalgorithmwithfeedbackneutralizationisillustratedinFig.7.Thefeedbackcomponentofthereferencemicrophonesignaliscanceledelectronicallyusingafeedbackneutralizationfilter

iscomputedas

vectorof

istheweight

isthereferencesignalvector,

istheweightvectorof

(17)(18)

where

canbeestimatedsimultaneouslybyusingthe

offlinemodelingtechnique[4].

2)AdaptiveIIRFilter:Equation(14)showsthatwhenfeedbackispresent,theoptimalsolutionoftheadaptivefilterisgenerallyanIIRfunctionwithpolesandzeros.ThisrationalfunctioncanbeapproximatedbyanFIRfunctionofsufficientorder,butasmallerstepsize

and

thanfor

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

Fig.9.Basicconfigurationofnarrow-bandANCsystem.

algorithmhaveneverbeenprovenformally.Amodifiedleakyversionofthesimplifiedhyperstableadaptivere-cursivefilter(SHARF)algorithm[52]hasbeendevelopedforANCapplicationstoimprovethestabilityoftheIIRadaptivefilter[53].Inthatalgorithm,alowpassfilterisusedtosmooththeerrorsignalforthefiltered-UrecursiveLMSalgorithm,therebyprovidingahigherstabilitymargin.III.NARROWBANDFEEDFORWARDANC

Manynoisesareperiodic,suchasthosegeneratedbyengines,compressors,motors,fans,andpropellers.Directobservationofthemechanicalmotionofsuchsourcesgenerallyispossiblebyusinganappropriatesensor,whichprovidesanelectricalreferencesignalthatcontainsthefundamentalfrequencyandalltheharmonicsoftheprimarynoise.However,thistechniqueisonlyeffectiveforperiodicnoisebecausethefundamentaldrivingfrequencyistheonlyreferenceinformationavailable.

A.Introduction

Abasicblockdiagramofnarrow-bandANCforreducingperiodicacousticnoiseinaductisillustratedinFig.9.Thissystemcontrolsharmonicsourcesbyadaptivelyfilteringa

internallygeneratedbysynthesizedreferencesignal

theANCsystem.Thistechniquehasthefollowingadvan-tages:1)undesiredacousticfeedbackfromthecancelingloudspeakerbacktothereferencemicrophoneisavoided;2)nonlinearitiesandagingproblemsassociatedwiththereferencemicrophoneareavoided;3)theperiodicityofthenoiseremovesthecausalityconstraint;4)theuseofaninternallygeneratedreferencesignalresultsintheabilitytocontroleachharmonicindependently;and5)itisonlynecessarytomodeltheacousticplanttransferfunctionoverfrequenciesinthevicinityoftheharmonictones;thus,anFIRfilterwithsubstantiallylowerordermaybeused.Thereferencesignalgeneratoristriggeredbyasyn-chronizationpulsefromanonacousticsensor,suchasatachometersignalfromanautomotiveengine.Ingeneral,twotypesofreferencesignalsarecommonlyusedinnarrow-bandANCsystems:1)animpulsetrainwithaperiodequaltotheinverseofthefundamentalfrequencyoftheperiodicnoise[54]and2)sinewavesthathavethesamefrequenciesasthecorrespondingharmonictonesto

KUOANDMORGAN:ACTIVENOISECONTROL

becanceled.Thefirsttechniqueiscalledthewaveformsynthesismethod,whichwasproposedbyChaplin[55].Thesecondtechniqueembodiestheadaptivenotchfilter,whichwasoriginallydevelopedforthecancellationoftonalinterference[56]andappliedtoperiodicANC[57].

ThewaveformsynthesismethoddiscussednextinSectionIII-Bemployssynchronoussampling.However,forsomeapplications,theactualperiodwillvaryfromthenominalvalueasafunctionofloadingconditions.Therefore,itissometimesdesirabletooperateasynchro-nouslywithafixedsamplingratesothatthesecondary-pathestimatefiltercoefficientsdonothavetobechangedasafunctionofactualmachinerotationrate.Also,somedigitalsignalprocessorscannotbeefficientlyutilizedonasynchronoussignal-drivenbasis.AsynchronousANCsystemsusingtheFXLMSalgorithmeliminatetheproblemofhavingtochangeasthesamplingratevariesandareimplicitinthelaterformulationsofSectionsIII-CandIII-D.

B.WaveformSynthesisMethod

1)StructuresandAlgorithms:Thewaveformsynthesizer[55]storescancelingnoisewaveformsamples

isthenumberofsamplesoveronecycleofthe

waveformand

(19)

representsthe

andcanbeimplementedasapointer

incrementedinacircularfashionbetweenzeroand

foreachsamplingperiod,controlledbyinterruptsgeneratedfromthesynchronizationsignal.

Theresidualnoisepickedupbytheerrormicrophoneissynchronouslysampledwiththereferencesignaltimingpulses.Inapracticalsystem,thereisadelaybetweenthetimethesignal

isthetimedelay,whichis

constantforagivenloudspeaker-microphonearrangement,mustbeupdated

asthesamplingratevaries,sinceitissynchronizedwiththenoisesource.

949

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

thcoefficientofthefilter

mod

Fig.10.Equivalentdiagramofwaveformsynthesismethodusingimpulsetraininputandneglectingsecondarypatheffects.

(24)

2)PrincipleandAnalysis:ThewaveformsynthesismethodisequivalenttoanadaptiveFIRfilteroforder

excitedbyaKroneckerimpulsetrainofperiod

where

]isspecified

by(22).Thepresenceof

isthediscreteKroneckerdeltafunctionand

input

betweentheprimaryisderivedas[54]

isthenumberofsamplesofdelayfrom

toissmallcomparedtothefilterlength

from

forthedelayedLMSalgorithmis[59]

planetocreate

nullsinthefrequencyresponseatharmonicfrequencies

andaccord-inglyincreasestheout-of-bandovershootofthefrequencyresponse[59],[60].Asthestepsize

fromstabilityconsiderations;thatis,

(Hz)[54].Thisshowsthatthebandwidthofthenotchfilterisproportionaltothestepsize

mustbecompensated

forbyusingtheFXLMSalgorithm.Assumingasecondary-oforderpathestimate

and

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

Fig.11.Single-frequencyadaptivenotchfilter.

and

referencesignal.A90

fromtheprimaryis[56]

.Thus(31)

where

arelocatedinthe

input

thorderadaptivefilter,(27)becomes[61]

(32)

whereand

and

arethefilteredversionsof

atfre-andisthephasedifferencequency

atForsmallhasbetween

complexconjugatepolesatradius

arepositive,theradiusof

thepolecanbegreaterthanoneonlyif

(34)

andtheconvergencetimeconstantissloweddownbyafactorof

s

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

theout-of-bandgainproblemistoequalizethesecondary-pathtransferfunction

3)Direct/ParallelForm:Aconfigurationofmultipleref-erencesignalgeneratorsandcorrespondingadaptivefiltershasbeendeveloped[66]toimprovetheperformanceofANCsystemsforautomotiveapplications.Theideaistoseparateacollectionofmanyharmonicallyrelatedsinu-soidsintomutuallyexclusivesetsthatindividuallyhavefrequenciesspacedoutasfaraspossible.Ingeneral,ifthereare

containsstaggeredsinusoidalfrequenciesof

everyother

and

cosinetableanda90

orusesonlyone

iseffectivelyincreased,ascompared

tothedirectimplementationtechnique.

4)CascadeForm:Ideally,multiple-sinusoidreferencesaremoreeffectivelyemployedinacascadeof

(37)

where

thsectionadaptivefilter.Each

sinusoids

(35)

where

thsinusoid.Whenthefrequencies

ofthereferencesinusoidsareclosetogether,alongfilter

producesanotchatIfanestimateofthe

secondary-pathtransferfunctionisavailable,itispossi-bletoconfigurea“pseudocascade”arrangement[60]thatideallyperformsasatruecascadebutrequiresonlyonesecondarypathestimate

potentiallycontainsthefundamentalandall

harmoniccomponentsoftheperiodicnoise.Theshape

isdependentontheduty-cycleofthespectrumof

whereratio

sinusoids,

adaptivefilteroutputs

isderivedasinthesingle-frequencycase.Sinceonlyoneerrorsensorisused,there

isonlyoneerrorsignal

adaptivefiltersbasedontheFXLMSalgorithm.

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

Fig.15.WidebandadaptivefeedbackANCsystemusingtheFXLMSalgorithm.

Fig.13.izer.

Blockdiagramofsingle-frequencyactivenoiseequal-

Fig.14,theprimarynoiseisexpressedinthe

isthesignal

obtainedfromtheerrorsensorand

andusethisasa

synthesizedreferencesignal

Fig.14.Single-channelfeedbackANCsystem.

andthebalancingbranch.Thegains

],thepseudo-errorcanbeexpressedas

,whichistheresidualnoiseofthe

conventionalANCsystem.TheadaptivefilterminimizesthepseudoerrorsignalusingtheFXLMSalgorithm.Afterthefilterhasconverged,

containsaresidualcomponentofthenarrow-bandnoisewhoseamplitudeiscontinuously,linearly,andtotallycontrolledbyadjustingthegainvalue

isfilteredbythe

andthencombinedwithsecondary-pathestimate

toregeneratetheprimarynoise.

Thecompletesingle-channeladaptivefeedbackANCsystemusingtheFXLMSalgorithmisillustratedinFig.15,

isalsorequiredtocompensateforthesecondarywhere

issynthesizedaspath.Thereferencesignal

arethecoefficientsoftheusedtoestimatethesecondary

path.

2)AlgorithmAnalysis:FromFig.15,wehaveifoftheLMSalgorithmissmall(slowconvergence),theadaptivefilter

canbecommutedwith

canbemodeledby

apuredelay,thatis,

to

predictionerrorfilter

anadaptivepredictoroftheprimarynoise

iscalledthe

actsas

of

feedbackANCfrom

is[4]

fortheANCfilter.In

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

Fig.17.HybridANCsystemwithcombinationoffeedbackANCandfeedforwardANC.

Fig.16.Blockdiagramofadaptivepredictor.

ANCsystemdiscussedinSectionII.Thestabilityrobust-nessoftheadaptivefeedbackcontrollertochangesintheplantresponsecanbeseparatelyassessedusingageneral-izationofthecomplementarysensitivityfunction[75].Thestabilityrobustnessisimprovedbyincorporatingvariousformsofeffortweightingintothecostfunction,resultingintheleakyFXLMSalgorithmusedinfeedforwardANCsystems.

3)OtherFeedbackANCAlgorithms:Theoutput-whiteningfeedbackANCmethod[76]assumesthattheprimarynoise

oftheprimarynoiseattheerrorsensorthantheoutputofthereferencesensor,whichislocatedawayfromthecontrolpoint.Thisisparticularlytruewheneverthenoisefieldisisotropicandthereferencesensorisnolongerfullycoherentwiththenoiseattheerrorsensorlocation.B.HybridANCSystems

ThefeedforwardANCsystemsdiscussedinSectionIIusetwosensors:areferencesensorandanerrorsensor.ThereferencesensormeasurestheprimarynoisetobecanceledwhiletheerrorsensormonitorstheperformanceoftheANCsystem.TheadaptivefeedbackANCsystemusesonlyanerrorsensorandcancelsonlythepredictablenoisecomponentsoftheprimarynoise.AcombinationofthefeedforwardandfeedbackcontrolstructuresiscalledahybridANCsystem,asillustratedinFig.17[80].ThereferencesensoriskeptclosetothenoisesourceandprovidesacoherentreferencesignalforthefeedforwardANCsystem.Theerrorsensorisplaceddownstreamandsensestheresidualnoise,whichisusedtosynthesizethereferencesignalfortheadaptivefeedbackANCfilter,aswellastoadaptthecoefficientsofboththefeedforwardandfeedbackANCfilters.ThefeedforwardANCattenuatesprimarynoisethatiscorrelatedwiththereferencesignal,whilethefeedbackANCcancelsthepredictablecompo-nentsoftheprimarynoisethatarenotobservedbythereferencesensor.

ThehybridANCsystemusingtheFIRfeedforwardANCandtheadaptivefeedbackANCisillustratedinFig.18,

isgeneratedusingthewherethesecondarysignal

outputsofboththefeedforwardANCfilterhastworeferenceinputs:and

thecoefficientsofthefilters

fromthereferencesensorand

areusedtoadapt

isminimumphase.

Then,fromlinearestimationtheory,theoptimalcontrollerisexpressedas

thatisspectrallywhite;inotherwords,allthe

energythatispredictablefromtheMAmodel

andpredictthenextvalueof

anddevelopaprocedureforestimatingits

parameters.ThepredictionpartisthenformulatedusingthestandardKalmanfiltersetup.

TheperformanceoftheKalmanalgorithmwascom-paredwiththefeedforwardANCalgorithmdiscussedinSectionIIbyZangi[79].Theoutputoftheerrorsensorcontainsmuchmoreinformationaboutthefuturevalues

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

Fig.18.HybridANCsystemusingtheFIRfeedforwardANCwiththeFXLMSalgorithm.

V.MULTIPLE-CHANNELANC

Sincethenoisefieldinanenclosureoralarge-dimensionductismorecomplicatedthaninanarrowduct,itisgenerallynecessarytouseamultiple-channelANCsystemwithseveralsecondarysources,errorsensors,andperhapsevenseveralreferencesensors.Someofthebest-knownapplicationsarethecontrolofexhaust“boom”noiseinautomobiles[81]–[84],earth-movingmachines[85],andthecontrolofpropeller-inducednoiseinflightcabininteri-ors[86]–[88].OtherANCapplications,suchasvibrationcontrolincomplexmechanicalstructures,alsorequiremultiplechannels.

A.Principles

Theoreticalpredictions,computersimulations,andlab-oratoryexperimentsonharmonicANCinashallowen-closurewerepresentedinatrilogyofpapersbyNelsonetal.[]–[91].Thetotalpotentialacousticenergy

isthedensityoftheacousticmedium,

therrorsensorpositionintheenclosurewithatotalof

referencesensorstoformthereferencesignal

vector.ForadaptivefeedbackANC,thereferencesignalsareinternallysynthesizedbasedonthesecondaryanderrorsignals.Themultiple-channelANCsystemgenerateserrorsensorsaredistributedoverdesired

locationstomeasuretheresidualnoisecomponents.

Ablockdiagramofamultiple-channelANCsystemthatincludesfeedbackpathsfromthesecondarysourcestothereferencesensorsisillustratedinFig.20.Thewidearrowsrepresentanarrayofsignals(acousticorelectrical)

KUOANDMORGAN:ACTIVENOISECONTROL

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

955

forandarethefilteredreferencesignalvectors,whichareformedbyfiltering

bythesecondary-pathestimatesfromthe

therrorsensor.In(46),

representstheimpulseresponseofanFIRfilterthatisusedtoestimate

2

Fig.20.Blockdiagramofanadaptivemultiple-channelfeedfor-wardANCsystemwithfeedbackpaths.

isusedtoreplace

thataresymbolicallyexpressedasvectors.Thematrixrepresents

secondary-pathtransfersecondarysourcesto

from

possiblefeedforwardchan-nels,eachdemandingaseparateadaptivefilter,andthese

adaptivefiltersarerepresentedbythematrix

with

tocontroltheinfluenceofthe

onlyif

2

functions,

thsecondarysignalisobtainedbyfilteringthe

throughthecorrespondingadaptivereferencesignal

FIRfilter

(43)

where

theweightvectorofthe

is

(47)

wherethesuperscript

playsthesamerole

asthereferencesignalautocorrelationmatrixinthesingle-channelcase.Theeigenvaluesof

isthecommonreference

signalvectorforalladaptivefilters.

Thecostfunctionoftheadaptivefiltersisapproximatedbythesumoftheinstantaneoussquarederrorsas

equa-tions[4]

(45)

where

(46)

956

Thus,theconvergenceofthe

generalbroad-bandmultiple-channelFXLMSalgorithmislimitedbyboththespatialandtemporalcharacteristicsofthesystem.

Aswiththesingle-channelleakyFXLMSalgorithm,thecostfunctioncanbemodifiedtoincludethecontroleffort,writtenas

(48)

PROCEEDINGSOFTHEIEEE,VOL.87,NO.6,JUNE1999

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

where

andmoderatingthe

controleffort

forand

(52)

(49)

where

theigenvalueof

Theeffectof

arethefilteredreferencesignalvectors.

Apracticalapplicationofmultiple-reference/multiple-outputactivecontrolforpropellerblade-passagenoiseinsidea50-seataircrafthasbeenreported[33].Thatsystemusesthreereferencesignals(internallygeneratedsinusoids)forthefundamentalfrequencyanditsfirsttwoharmonics,16secondarysources,and32errorsensors,resultingina3

32multiple-reference/multiple-outputANCsystem.C.Multiple-ChannelIIRAlgorithm

Thepurposeofthebroad-bandfeedforwardmultiple-reference/multiple-outputadaptiveIIRcontroller[41],[73],[96]istoprovidemultiple-channelANCcapabilitywithlongerimpulseresponsesandfeedbackcompensationusingalow-orderrecursivesection.AsillustratedinFig.21,thecontrollercontainstwofiltersections.Thefirstsectionisablockofall-zeroFIRfiltersfromeachreferencesensortoeachsecondarysource,whilethesecondsectionimplementsamatrix-IIRstructureofall-polefilters.Thefeedforwardsectionofthecontrollerisrepresentedbythetransferfunctionmatrix

frominputtothe

thcomponentoftheoutputvector

repre-sentstherecursivesectionofthecontrollerwithelement

from

,whichdrivesthe

willnotonlyspeedup

convergencebutcanalsopreventphysicallyunreasonablevaluesofcontroleffort.Thevalueof

secondarysourcesto

the

secondaryactuatorstothereferencesensorinthebroad-bandmultiple-channelANCsystemistousefeedbackneutralization.

(53)

D.Multiple-Reference/Multiple-OutputFXLMSAlgorithmThegeneralmultiple-reference/multiple-outputANCsys-temusingtheFXLMSalgorithmisshowninFig.20,where

hasthattheANCfilter

areelementsofthesignalvector

isthe

referenceinputindexand

thsecondarysourceis

(50)

where

arethereferencesignalvectors.Therearedifferentsecondarypathsbetweenthe

secondarysourcesanderrorsensors,whicharemodeled

togenerateanarrayoffilteredreferencesignalsby

forthemultiple-channelFXLMSalgorithm

(51)

wherewhere

and

arethefeed-forwardandfeedbackfiltercoefficients,respectively,and

are,respectively,thereferenceinputsignal

vectorsandoutputsignalvectors.

Amultiple-reference/multiple-outputfiltered-UrecursiveLMSalgorithm[41],[96]fortheIIRfilterstructuremini-mizesthesumofthe

(54)(55)

and

are,respectively,thefilteredreferenceandoutputsignalvectors.

Multiple-channeladaptiveIIRfilteringhasbeensuccess-fullyappliedtotheactivecontrolofrandomnoiseinasmallreverberantroom[41].Inthatwork,theperformanceofadaptivemultiple-channelFIRandIIRfilterswascompared

957

KUOANDMORGAN:ACTIVENOISECONTROL

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

Fig.21.Blockdiagramofmultiple-channelANCsystemusinganIIRadaptivefilter.

experimentallyforanANCsystemwithfoursecondarysourcesandeighterrorsensors.Thematrix-IIRstructureresultsinamorestableconfigurationinthepresenceoffeedback,especiallyifasmallleakagefactorisincluded.Theexperimentalresultsalsoshowthatfarbetterperfor-manceisachievedbyusingIIRfiltersratherthanFIRfilterswhentheprimarynoisesourcehasalightlydampeddynamicbehavior.

D.Multiple-ChannelAdaptiveFeedbackANCSystemsThesingle-channelfeedbackANCsystemshownin

systemthathasFig.15iseasilyextendedtoa

ofthefeedbackANCsystemissynthesizedas

anestimateoftheprimarynoise

(56)

istheimpulseresponsesoffilter,whichwhere

fromthemodelsthesecondarypath

arethesecondary

signalsobtainedfromtheadaptivefilters

byadjustingtheweightvectorforeachadaptive

filter

(57)

where

(58)

isthereferencesignalvectorfilteredbythesecondary-pathestimate

adaptivefeedbackANCsystem

isillustratedinFig.22.Inthissystem,therearesecondarypathsfromthe

therrorsensor,whichareestimatedbythecorre-spondingfilters

secondarysignalserrorsignalssecondary-pathestimatestogenerate

(59)

istheimpulseresponseofthesecondary-where

pathestimate

Fig.22.

BlockdiagramofK2MfeedbackANCsystem.

forthecorresponding

adaptivefilters,

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

Fig.23.Blockdiagramofonlinesecondary-pathmodelingtech-niqueproposedin[9].

Fig.24.BlockdiagramofANCsystemwithonlinesec-ondary-pathmodelingusingadditiverandomnoise.

A.FundamentalProblem

AnANCsystemusingtheFXLMSalgorithmwithadap-tiveonlinesecondary-pathmodeling[9]isillustratedin

generatesasecondaryFig.23.Theadaptivefilter

thatpassesthroughthesecondarypathnoise

forthetobeunobtrusive,itshouldobserveonly

thesignalsalreadyinthesystem.Consequently,inapracticalANCsystem,atradeoffbetweenindependenceandintrusionhastoberesolved.

B.AdditiveRandomNoiseTechnique

1)BasicTechniqueandConvergenceAnalysis:Anonlinesecondarypathmodelingtechniqueusingadditiverandomnoise[99]isillustratedinFig.24.Azero-meanwhitenoise

isinternallygeneratedandisaddedtothesecondary

todrivethesecondarysource.Theadaptivesignal

isconnectedinparallelwiththesecondarypathfilter

only.

Itisusefultodefinethecomponentoftheerrorduetotheoriginalnoiseas

(61)

where

aretheimpulseresponsesofattimeisuncorrelatedisalsouncorrelatedwith

alsoservesasanexcitationsignalfor

secondary-pathmodeling.Thecoefficientsoftheadaptive

areadjustedonlinetomodelcontinuouslythefilter

secondarypath

isapersistentexcitationsignal,andthat

time-invariantsystems,thesteady-statesolutionof[4]

areis

onlyif[orequivalently,].

isaffectedbytheEquation(60)alsoshowsthat

adaptivefilter

is

and

isvery

with

complicated.Forexample,bysubstituting

,whichisanundesiredsolutionand

shouldbeavoided.

Therearetwoimportantrequirementsofsecondary-pathmodeling.Thefirstisthatanaccurateestimateof

willhaveaneffecton

theconvergenceoftheadaptivealgorithm.

AsillustratedinFig.24,thecoefficientsoftheadaptive

areupdatedbytheLMSalgorithm,whichisfilter

expressedas[4]

(62)

isthecoefficientvectorofandiswhere

inthereferencesignalvector.Theexpectedvalueof

(62)convergestoitsoptimalsolutionandareuncorrelated.However,thisdoesnotmean

willbeequaltothatinstantaneousvaluesof

in(62)is

adisturbancethatisfrustratingconvergenceoftheLMSalgorithmandwillthereforedegradetheperformanceoftheadaptivefilter

directly.However,

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

Foronlinemodeling,actslikeanuncorrelatedplant

Afterconvergence,thisresidualnoisenoiseofpower

willperturbtheadaptiveweightsofdueto

and

impulseresponsesofthefiltersforsufficientlysmallstepsize

arethe

and

and(62)willconverge

isthe

andorderoftheadaptivefilter

[4].Asanexample,supposethat

(anonlinenormalizedmodelingerror

[4].Therefore,itwouldtake100times

toconvergeonlineasitwouldtoconvergeaslongfor

offline.InmostANCapplications,theinterferenceismuchlargerthantheexcitationsignalandthe

isthereforeveryslow,oritconvergencerateoffilter

mayfailtoconvergebecauseoffinite-wordlengtheffects.2)MethodsforImprovement:Toimprovetheconver-inthepresenceoftheinterferencegenceof

thatiscorrelatedwiththe

[100],[101].Anadditionaladaptiveprimarysource

asthereferencesignalisusedtocancelthefilterwith

inerrorsignalpickedupbyundesiredcomponent

theerrorsensor.Theconvergencerateofthemodelingfilter

hasbeenshowntoimprovebyafactorof

and

isusedduringtheinitializationstageor

aredetected,atifsignificantchangesin

andareupdated.Otherwisethewhichtimesonly

systemupdates

astheexcitationsignal.Thecostsonlyonedelayunitbecauseimplementationof

delayunitsarealreadyincludedin

haveconverged,wehave[4]

inerrorsignal

[102].Theoptimumdelayfortheadaptivepredictorisequaltothelengthoftheimpulseresponseofthesecondarypathbeingmodeled.

C.OverallModelingAlgorithm

Anoverallonlinesecondary-pathmodelingalgorithm[49],[103]–[105]triestoeliminatethebiasingterm

in(60)byintroducinganotheradaptivefiltertomodel

thatistheoutputsignalof

providessufficientexcitationatall

frequencies.Therefore,thecorrespondingand

andthe

lengthoftheimpulseresponseof

arelarge.Adaptivefilters

and

areabletotrack

inboth

areabletotrack“slow”changesonlinewhenisused[107].

D.Multiple-ChannelModelingAlgorithms

1)InterchannelCouplingEffect:Onlinemodelingof

secondarypathsismoredifficultthanfora

fromsingle-channelcase,sincetheerrorsignal

the

andsecondarypathsfor

2

todecorrelatetheprimaryand

andwillconvergesecondarysignalssothat

to

960

andare

generatedbyadaptivefiltersandarecombinedwithadditive

todrivethesecondarysources.Theerrorrandomnoise

PROCEEDINGSOFTHEIEEE,VOL.87,NO.6,JUNE1999

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

Fig.26.Secondary-pathmodelingfora12222ANCsystemusingonerandomnoisegenerator.

signalismeasuredbythefirsterrorsensor,whichis

canceledbytheresidualerroroftheprimarynoise

thenoisesfrombothsecondarysources.Adaptivefilters

andareusedtomodelthesecondarypathsand

iszeromeanand

isuncorrelatedwith

willconvergeto[4]

andinthiscase],the

isbiasedbythecross-coupledsecondaryestimate

andispaths

adaptedatthesametimeas

secondary

pathsfromoneofthesecondarysourcestothesecondarysourcescouplestoeacherrorsensor.Thisprocessisrepeated

secondarypathtransfer

functions.Ashortcomingofthissolutionisthetotaltimerequiredtomodelallthesecondarypaths(bothofflineandonline),whichmaybetoolongforsomeANCapplications.Analternativesolutionistouse,forexample,tworandom

2system.Therandomnoisegenerators[4]fora1

andaremutuallyuncorrelatedandalsonoises

uncorrelatedwithothersignals.Thistechniquecanbegeneralizedtosolvetheinterchannelcouplingproblemof

ANCsystemusinga

secondarypathsusingasinglerandomnoisegenerator.

TheoverallmodelingalgorithmdiscussedinSectionVI-Ccanalsobeextendedtomultiple-channelANCsystemswith

isthenumberofsecondarysources.

Foreacherrorsignal,

areusedtomodelthecorrespondingsecondaryandcombinedwithanadaptivefilterpaths

tocancelthehighlycorrelateddisturbancefromtheprimarynoisesource.Thismultiple-channelANCal-gorithmwasappliedtocontrolstructuralvibration[109].3)AudioInterferenceCancellation:AnintegratedANC-audiosystemenhancesadesiredaudiosignalbyutilizingANCtoreduceunwantedacousticnoise.Thisintegratedsystemusessharedanalogcomponentssuchasmixers,amplifiers,andloudspeakerssothatmultiple-channelANCmaybeappliedinavarietyofapplications,suchasau-tomobiles,withouttheexpenseofsystemredundancies.Inthisintegratedsystem,theaudiosignalpickedupbytheerrorsensorsinanenclosurebecomesaninterferencetotheANCsystem.TheaudiointerferencetotheANCfiltercanbereducedusinganadaptivenoisecancelerwiththedesiredaudiosignalasthereferencesignal[110].As-sumingthattheaudiosignalisofpersistentexcitationanduncorrelatedwiththeprimarynoise,theadaptivefilterusedfortheaudiointerferencecancellationwillconvergetothesecondarypath,andthusalsoperformsonlinesecondary-pathmodeling.Inaddition,musicwouldbemoreenjoyablethanrandomnoise,bothintheinitialtrainingstageandforonlineoperation.Thisintegratedsystemisexpandedtoincorporatehands-freecellularphoneoperation[111].Interferencecancellationandonlinemodelingareinher-entlymoredifficultforthemultiple-channelcase.First,theleftandrightaudiosignalsmaybepartiallycorrelatedandthatwouldcauseproblemsinuniquelyidentifyingthecross-coupledsecondarypaths.Furthermore,theinterchanneldecouplingdelaytechniquecannotbeusedherebecausethatwoulddestroythestereoeffectofthedesiredsignals.Consequently,offlinetechniquesorsomecombinationofonlineandofflinetechniqueswouldhavetobeemployedformultiple-channelsystems.

VII.OTHERANCSTRUCTURESANDALGORITHMS

TheadaptivetransversalfilterusingtheFXLMSalgo-rithmisthemostwidelyusedtechniqueforANCsys-tems,owingtoitssimplicityandrobustness.However,theLMSalgorithmhasthedisadvantageofrelativelyslowandsignal-dependentconvergence.ThismaybeonlyaminorproblemforANCsystemswithstationarynoisesourcessuchastransformers,electricpowergenerators,diesel-poweredboats,locomotives,andcompressors.Fornonstationarynoisesourcessuchasautomobiles,slowconvergenceisacriticalproblemwhenattemptingtocanceltransientnoise,whichoccursatvehiclestartups,stops,orgearshifts,orwithsuddenchangesofenginespeedsorroadnoisefromtires.

961

KUOANDMORGAN:ACTIVENOISECONTROL

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

Fig.27.Overallstructureoflatticepredictorandmultipleregressionfilter.

Anadaptivesysteminvolvestwobasicparts:afilteringoperationthatproducesanoutputsignalandanadaptationalgorithmthatadjuststhecoefficientsofthefilter.Ifatransversalfilterisused,theconvergenceratecanbeimprovedbyusingmoreadvancedalgorithmssuchasadjustable-step-sizeLMSalgorithmsandrecursive-least-squares(RLS)algorithm.Theotherapproachistoconditionthereferencesignalbyemployingdifferentfilterstructuressuchasthelatticefilter,subbandfilter,ororthogonaltransform.

ThesimplestapproachforimprovingtheconvergenceoftheLMSalgorithmistouseadaptivestepsizes[112]–[115].Theselectionofstepsizecanbebasedonthemagnitudeoftheerrorsignal,polarityofsuccessivesamplesoftheerrorsignal,measurementofthecorrelationoftheerrorsignalwiththereferencesignal,andotherfeatures.Theperformanceofthesetechniquesishighlydependentontheselectionofcertainparametersinthealgorithms,andtheoptimalchoiceishighlysignaldependent.Avariable-step-sizeLMSalgorithmwasusedtoimproveconvergenceforanair-conditioningductANCapplication[116],[117].A.LatticeANC

1)LatticeStructuresandAlgorithms:Theadaptivelat-ticepredictorisamodularstructurethatconsistsofanumberofcascadedstageswithtwoinputandtwooutputchannels.Thelatticestructureenjoystheadvantagesofasimpletestforfilterstability,goodperformanceinfinite-wordlengthhardwareimplementations,andgreatlyreducedsensitivitytotheeigenvaluespreadofthereferencesignal[15].Therecursiveequationsthatdescribethelatticestructureareexpressedas[4]

ofadaptivefilterare

updatedbythegradientlatticealgorithmtominimizethemeansquareofthesumofforwardandbackwardpredictionerrorsateachstage[118],[119]

(68)

thstage.Thesteady-statewhere

reflectioncoefficientsofthelatticepredictorhaveamag-nitudelessthanone[15].Thispropertyisveryimportantandconvenientforafixed-pointhardwareimplementation.Anotherimportantpropertyofthelatticestructureisthatthe

aremutuallyuncorrelatedbackwardpredictionerrors

[15].Thus,thelatticepredictortransformsthecorrelatedreferencesignals

(69)

where

(66)(67)

istheforwardpredictionerror,isthewhere

isthereflectioncoeffi-backwardpredictionerror,

isthestage(order)index,andcient,

isthetotalnumberofcascadedstages.Thereference

isusedastheinputsignalforstageone,assignal

showninFig.27andexpressedby

962

followingtheadaptiveregres-sionfilterresultsintheFXLMSalgorithm,expressedas[4]

(72)

PROCEEDINGSOFTHEIEEE,VOL.87,NO.6,JUNE1999

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

Fig.28.ANCsystemusingalatticefilterandtheFXLMSalgorithm.

whereisthefilteredbackwardpredictionerrorvectorwithelements

isalsofilteredby

toyield-pointdatabuffer.Thisfilteredreferencesignalvectoristhentransformedinto

usingtheFFT.Theresidualthefrequencydomain

measuredbytheerrorsensorisalsostoredinanerror

forex-pressedin(73)requiresintensivecomputationandstorage

isfilteredbythesinceeach

secondary-pathestimate

hasbeensplitinto

for

eachfrequencybinthatisinverselyproportionaltothesignalpoweratthatbin.Thisresultsinthenormalizedfrequency-domainFXLMSalgorithmexpressedas

(74)

andthereflectioncoefficients

arecopiedfromtheadaptivelatticepredictorshowninFig.28.Thisslavedlatticefilterthengenerates

where

isthecomplexconjugateof

(75)

isthenormalizedstepsizeatfrequencybin

(76)

isalowpass-filteredestimateofthepowerof

samples.

Insteadoffilteringthesignalsamplebysample,thefrequency-domainFXLMSalgorithmprocessesthesignalblockbyblock.Thus,thereare

isfirstfilteredby

-pointdatabufferandthentransformedtothefrequency-domainsignals

toproducethefrequency-domain

outputsignals

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

Fig.30.DelaylesssubbandANCsystem.

hasbeenrecentlyadvancedforthatapplicationinvolvestheuseofsubbands[129],[130].Processingthesignalsinsubbandshasatwofoldadvantage:1)thecomputationalburdenisreducedbyapproximatelythenumberofsub-bands,sinceboththenumberoftapsandweightupdateratecanbedecimatedineachsubbandand2)fasterconvergenceispossiblebecausethespectraldynamicrangeisgreatlyreducedineachsubband.Unfortunately,thebandpassfiltersusedinsubbandprocessingwillintroduceasubstantialdelayinthesecondarypath.

Amodificationofthesubbandtechniqueeliminatesdelayinthesecondarypath[131],[132].Thebasicideaisthattheadaptiveweightsarecomputedinsubbandsbutarethencollectivelytransformedintoanequivalentsetofwidebandfiltercoefficients.Fig.30showsthebasicconfigurationofthedelaylesssubbandANCtechnique.Thedisturbanceandreferenceareassumedtobederivedfromacommonnoisesourcethroughthelineartransferfunctions

is

developedasatransformationoffiltered-Xderivedsubbandweights,therebyeliminatinganydelayassociatedwiththecancellationsignal.

Thefilteredreferencesignalanderrorsignal

aredecomposedintosetsofsubbandsignalsusingthebandpassfilters

(possiblyafterap-propriatebandshifting)andthesubbandadaptiveweightsarecomputedbythecomplexLMSalgorithm.Theadap-tiveweightsineachsubbandarethentransformedintothefrequencydomain,appropriatelystacked,andinverse-transformedtoobtainthewidebandfiltercoefficients.OnewaytoimplementthedelaylesssubbandadaptivefilteristoemploythepolyphaseFFTtechnique[123].Ageneralformulationofthecomputationalrequirementsintermsoftheadaptivefilterlength,numberofsubbands,andpolyphasefilterlengthcanbefoundelsewhere[132].D.RLSAlgorithmforANC

TheRLSalgorithmcanbeusedwithanadaptivetransversalfiltertoprovidefasterconvergenceandsmallersteady-stateerrorthantheLMSalgorithm.The“fasttransversalfilter”[133]isanefficientversionoftheRLSalgorithm,whichreducestherequiredoperationstoapproximately

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

RLSalgorithmsandthefasttransversalfilter[15].WenowshowhowtheRLSalgorithmcanbemodifiedforANCapplications,whichincorporatesasecondarypathfollowingthetransversalfilter.ThismethodcanalsobeappliedtomodifythefasttransversalfilterforANCapplications.Theleast-squaresmethodassumesacostfunctionattime

fromthepreviousinsteadofesti-andtheninvertingittoobtainmating

(77)

(79)(80)

where

thefilteredreferencesignalvectorwithelements

is

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

Fig.32.SchematicdiagramofacousticANCexperimentinareverberantroom(adaptedfrom[132]).

Fig.33.[141]).

Blockdiagramofelectronicmuffler(adaptedfrom

obtainstheerrorsignalwhichistobeminimized.The

isderivedfromanothermicrophonereferencesignal

ontheright,whichisincloseproximitytotheprimarydisturbance.

TheapplicationofANCtothecancellationofbroad-bandacousticnoiseinareverberantroomrequiresalargenumberoftaps.Inordertominimizethecomputationalrateandtoenabletherealizationofthistechniqueusingasinglelow-costDSPchip,thesubbandtechniqueshowninFig.30canbeused.Applicationofthistechniqueusinga512-tapwidebandfilterhasachievedmorethan15dBofcancellationoverabandof100–500Hz[132].

B.Single-ChannelNarrow-BandFeedforwardSystems1)EngineExhaustNoise:Thecharacteristicsofengine-generatednoisecanvaryrapidlywithabruptchangesinengineloading,suchaswhentheengineisquicklyacceleratedordecelerated.Inaddition,engine-generatednoiseisdominatedbyharmonicallyrelatedcomponentshavingfrequenciesthatvaryasafunctionoftheenginerotationalspeed.Thedominantharmoniccomponentswilldependonthenumberofcylinders,duetothedifferingfiringpatterns.

Anexampleofelectronicmufflerperformance[140]wasobtainedfora450-horsepower,six-cylinder,two-cycledieselengineusedtopoweranauxiliaryelectricalpowergenerator.Themultiple-frequencyparallelFXLMSalgo-rithmofSectionIII-D2wasusedforthisapplication.Theelectronicmufflereliminatesthebackpressureassociatedwithaconventionalpassivemuffler,evenwhilereducingthenoiselevel.TheANCsystemisnormallylimitedtolow-frequencyoperation;however,itcanbecombinedwithalow-pressure-droppassivesilencertoattenuatetheresidualnoiseathigherfrequencies.Thus,thecombinationisabletoachievebothaimsoflowpressuredropandlownoise,simultaneously.

Theblockdiagramoftheelectronicmufflerdevelopedin[141]isshowninFig.33.Two4.5-inlow-frequency,high-temperatureloudspeakersareused.Thecancelingnoiseisportedaroundthepipeinacoaxialarrangement,andcancellationtakesplaceintheopenairattheendofthepipe.Theerrormicrophonewasmountedontherearofthe

966

Fig.34.Activeheadsetforcancelingnarrow-bandperiodicnoise(adaptedfrom[142]).

vehicle,10infromtheendpipe.ThesystemconsistsofthreemajorsubsystemsdiscussedinSectionIII-C.Thefirstisthewaveformgenerator,whichconvertsthepulsetrainfromtheenginetachometerintoasetofsinewaveshavingfrequenciesthataremultiplesoftheenginerotationrate.Inthenextsubsystem,thesesinewavesareadaptivelyfiltered(toadjustamplitudeandphase)andthenmixedtodrivethecancelingloudspeaker.Thethirdsubsystemmonitorstheresidualnoiseatthecontrollocationandadaptsthefiltercoefficients.

2)ANCHeadsets:Thepurposeofhearingprotectorsistoprotecttheearfromharmfulnoise.TheapplicationoffeedforwardANCusingthewaveformsynthesismethodhasbeendeveloped[142]tocancelrepetitivebackgroundnoiseattheearsofapersonwhileretainingtheabilitytohearotherambientsounds,asillustratedinFig.34.Thesynchronizationsignalscanbeobtainedbyeitheroptical,ultrasonic,orelectricalmeans(e.g.,wireorradio).ThesynchronizationsystemcanbecommontoanumberofANCheadsets,suchasinthecaseofavehiclecarryingmultiplepassengers.Becausethecancellationonlyaffectsnoisesynchronizedtothesourceoftherepetitiveback-groundnoise,mostofthelow-frequencysoundthatisnotsynchronizedremainsunaffected.

3)FanNoise:Asingle-channelnarrow-bandANCsys-temcanbeusedtocancelnoiseradiatedfromsmallaxialflowfans.Onesuchapplicationappearsin[143],whichusesaninfrareddetectorplacedoverthefantoderivebladepassagerate.Experimentsshowedthattheradiationofbladepassagetonescouldbeattenuatedby12dBusingthismethod.ThedevelopmentofanANCsystemforductedfansusingthewaveformsynthesismethodhasalsobeenreported[144],[145].

PROCEEDINGSOFTHEIEEE,VOL.87,NO.6,JUNE1999

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

C.Multiple-ChannelFeedforwardSystems

Multiple-channelfeedforwardANCapplicationshavebeendemonstratedforvibrationANConmechanicalstruc-tures,acousticANCinenclosuressuchasautomobileandaircraftcabins,free-fieldtransformernoise,andacousticANCinlarge-dimensionalductswithhigh-ordermodes.1)VehicleEnclosures:Mostmidsizefour-cylindervehi-clessufferfromenginenoise,particularlythelowfrequency“boom”attheenginefiringfrequency,whichisthedomi-nantsourceofinternalnoiseathigherenginespeeds[82].Withrespecttotheinteriorspaceofautomobiles,threeaspectscanbeconsideredbeneficialforthesuccessofANC:1)theperiodicityofengine-relatednoise;2)therelativelysmallvolumeofthecabin,whichleadstoasmalloverlapoftheresonantmodesinthelowerfrequencyrange;and3)thefactthatANCisonlyrequiredinthespacewheretheheadsofthedriverandpassengeraretypicallylocated.Therefore,alow-costsolutionistoprovideaquietzoneinsidethecabinaroundthedriver’sandpassengers’headposition.

Engine-relatednarrow-bandnoisecomponentscanbecanceledeitherbythewaveformsynthesismethodorbytheadaptivenotchfiltertechnique.Theenginespeedismeasuredbyanelectricalsensor,providingapulsesequencefromwhichareferencesignalissynthesized.Thecancelingsignalisgeneratedbyanadaptivefilterthatfeedssecondaryloudspeakersservingascontrolsources.Afastalgorithmtoadapttheadaptivefiltercoefficientsisessentialtoprovideacancelingsignalthattracksunderrapidlychangingrideconditions.Therefore,anANCsysteminacabinwillcontinuetofunctionevenwhenwindowsorhatchesareopened,andthereforeenablesexternalwarningsoundstobeheard.

ElliottandcoworkersdevelopedanANCsystemforthereductionofenginenoiseinacar[33],[81].Inthissystem,areferencesignalwasobtainedfromtheignitioncircuitandsixloudspeakersinthecarwereused.Theseloudspeakersandtheirassociatedpoweramplifierscanbesharedwiththein-carentertainmentsystem.UptoeighterrormicrophoneswereusedtomonitortheperformanceoftheANCsystem.Areductionof10–15dBattheenginefiringfrequencywasachievedbythisANCsystem.

Activecontroloflow-frequencyroadnoisepresentsagreaterchallengethancontrollingenginenoise.Inthatapplication,multiplebroad-bandprimarynoisesrequirehigher-orderadaptivefilters,thusconsiderablyincreasingtheconvergencetimeandcomputationalburden.Inoneapplication[146],sixaccelerometerswereplacedclosetothefrontwheels.Twosecondaryloudspeakerswereplacedinthedoorsadjacenttothedriverandfrontpassenger,andtwoerrormicrophonewereplacedonthefrontheadrestsattheouterearpositions.Themultiple-channelFXLMSalgorithmdiscussedinSectionV-Bwasusedforthisapplication.Abroad-bandreductionofabout7dB(A-weighted)inthesoundpressurelevelwasmeasuredwhendrivingonatypicalroadsurface.Inthisapplication,theimportantdesignissuesaretheplacementofreference

KUOANDMORGAN:ACTIVENOISECONTROL

sensorsformaximumcoherencewithrespecttotheinteriornoisetobecanceledandthetimedelayofthereferencesignals.

VibrationalANCinautomobilesisasimpleextensionofacousticANC[82].Accelerometersandactuatorsarelocatedonthechassissideofactiveenginemounts.Thepotentialbenefitsofactiveenginemountsareverydramatic,notonlyreducingacousticnoiseandmechanicalvibrationwithinthecabinbutalsoimprovingthecontrolandridequalitiesofthevehicle.

2)AircraftCabins:Theinteriornoiseofpropeller-drivenaircraftwasfoundtobedominatedbytonesatthefunda-mentalandharmonicfrequenciesofthepropeller.Feed-forwardANCsystemswith16loudspeakersand32mi-crophoneshavebeendevelopedfornoisecontrolinthepassengercabinofapropelleraircraft[88].The32mi-crophonesarelocatedatseatedheadheightthroughoutthepassengercabin.Analternativetechniqueforcontrollingaircraftinteriornoiseistouselightweightvibrationalsecondarysourcesonthefuselage[147],[148].

3)Free-FieldRadiation:Inmanysituations,undesirednoiseisradiatedintothefarfield.Ifthenoisesourceisfixedandwelldefined,itispossibletosuppresstheradiationscatteredbytheprimarynoisesourcebysurroundingthenoisesourcewithalayerofsecondarysources.Thisconceptisknownasanactivenoisebarrier.TheANCtechniquecanbecombinedwithapassivebarrierinordertoimprovethenoiseattenuationatlowfrequencies.Thelocationandseparationoftheerrorsensorsandsecondarysourcescanbeoptimizedtogetlargenoiseattenuationoverawide

4area.Aconfigurationoftwoindependent1

systemswastestedin[149]usingthenarrow-bandmultiple-channelFXLMSalgorithm.Acancellationof6–30dBwasdemonstratedoverawidearea.Toobtaingreaterspatialcoverage,itisnecessarytodeployasystemwithmorechannels.Potentialapplicationsofthistechniquearereduc-ingenvironmentalnoiseinlocalareas,suchasquietingthepositionofamachineoperatorinanoisyfactory,providinganoisescreenforabedatanairporthotel,creatinganoisebarrieratairports,highways,andsoon.

4)TransformerNoise:ANCalsooffersanalternativetolargepassivebarriersforattenuatingtransformernoise[150].Thisnoiseiscomposedofeven-numberedharmonicsofthe60-Hzpowerfrequency.Experimentsusingfoursecondaryloudspeakersandsixerrormicrophoneswiththe

6narrow-bandFXLMSalgorithmhaveshown1

thatsparsearraysofcancelersareeffectiveinprovidingattenuationoversignificantanglesofazimuth.Cancellationvaluesof15–20dBwereobtainedover35–40

ofazimuthat240Hz

[150].Asimilarsystemcomposedofthreecontrollers,threemicrophones,andthreeloudspeakershasbeendeveloped[151],andmorethan10-dBsoundpressurelevelreductionwasachieved.

5)IntegrationwithAudioandCommunicationSystems:AsANCcontinuestoprogress,theneedforsuccessfulin-tegrationwithexistingsystemsbecomesapparent.Thisexpectationofaunifieddigitalsolutionisexemplified

967

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

2

Fig.35.Experimentalstructurefortwo-channelvibrationANCexperiment(from[152]).

inmodernautomotiveelectronics.AunifiedapproachtocombineANC,in-carentertainment,andcommunication(cellularphone)systemshasbeenproposed[111]usinganadaptivenoisecancelertoattenuatenoisepickedupbythemicrophonebeforetransmission,anacousticechocancelertoreduceacousticechofromtheloudspeakertothemicrophoneforhands-freefull-duplexcellularphones,andamultiple-channelANCsystemtoreducetheacousticnoiseinsideanautomobilepassengercompartment.

Ithasbeenfoundthatthestandardin-carentertainmentloudspeakerpositionsareoftenquiteacceptableforANCapplications,whiletheerrormicrophonescanbedistributedatpositionsdeterminedbyacousticmodeanalysisofthevehicle[82].Productionvehicleswillutilizethesameloudspeakersasusedbythein-carentertainmentsystem,sharingthesamepoweramplifier.Thein-carentertainmentsystemismovingtoacompletelydigitalsystem,inwhichcaseANCmayultimatelybecomeasoftwareadditiontothedigitalaudiosystem.

6)ModalANCforaVibratingBeam:ThemodalANCconceptintroducedinSectionVII-Bisexemplifiedbythecontrolofavibratingcantileverbeam[138].Themodeswerecalculated,anddrivingfrequencies

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

Fig.36.Experimentalsetupfor12222multiple-channelbroad-bandfeedforwardANCsystem(adaptedfrom[154]).

wasimplementedonaTexasInstrumentsTMS320C30-basedsystem.Themicrophonethatsensestheresidualerrorsignalwasplacedontheaxisofthepipeatvariouslocationsfromthepipeexit.Theconvergenceofthesystemdependsonadjustmentofthemicrophonepreamplifiergainbecausethemicrophonesignalisusedtosynthesizethereferencesignal.TheadaptivefeedbackANCsystemwastestedusingrealnoiserecordedfromarunningtractorengineandabout30dBofreductionoftheharmoniccomponentsisachieved[156].

2)Multiple-ChannelSystems:Themultiple-channelfeed-backANCalgorithmwastestedforasystemwithtwosecondaryloudspeakersandoneerrormicrophone,the2

theaverage,about20dBattenuationwasobtainedformostofthesignificantharmonicspresentintheprimarynoise.Theexperimentalsetupforthe2

1caseexceptthattwoerrormicrophones

areused.Thesecondaryloudspeakerswereagainmountedontheroofofthecabinandthetwoerrormicrophoneswereplacedbelowandfacingthetwoloudspeakers.Theperformanceofthe2

1system.IX.CONCLUSIONS

ANCcancelstheunwantednoisebygeneratingantinoiseofequalamplitudeandoppositephasethroughthesec-ondarysources.ThispaperhasemphasizedthepracticalaspectsofANCsystemsintermsofadaptivealgorithmsandDSPimplementationsforreal-worldapplications.ThemostwidelyusedANCsystemwiththeadaptivetransversalfilterandtheFXLMSalgorithmwasfirstdevelopedandanalyzedbasedonsingle-channelcasesforbroad-bandfeedforward,narrow-bandfeedforward,andadaptivefeedbackcontrol.Thesesingle-channelANCalgorithmswerethenexpandedtomultiple-channelcasesforcontrollingthenoisefieldinanenclosureoralarge-dimensionduct.Variousadaptivealgorithmssuchasthelattice,frequency-domain,subband,andRLSalgorithmswerealsomodifiedforANCappli-cations.Thefundamentalproblemsandseveralsolutions

969

1adaptivefeedbackANC

systemwastestedusingrecordedtractorenginenoise.On

KUOANDMORGAN:ACTIVENOISECONTROL

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

toonlinesecondary-pathmodelingwerediscussedforpro-vidingsomedirectionsonnewalgorithmdevelopments.Applicationexamplesdemonstratedtheconnectiontoreal-worldproblems.REFERENCES

[1]C.M.Harris,HandbookofAcousticalMeasurementsandNoise

Control,3rded.NewYork:McGraw-Hill,1991.

[2]L.L.BeranekandI.L.Ver,NoiseandVibrationControl

Engineering:PrinciplesandApplications.NewYork:Wiley,1992.

[3]P.A.NelsonandS.J.Elliott,ActiveControlofSound.San

Diego,CA:Academic,1992.

[4]S.M.KuoandD.R.Morgan,ActiveNoiseControlSys-tems—AlgorithmsandDSPImplementations.NewYork:Wi-ley,1996.

[5]C.R.Fuller,S.J.Elliott,andP.A.Nelson,ActiveControlof

Vibration.SanDiego,CA:Academic,1996.

[6]C.H.HansenandS.D.Snyder,ActiveControlofNoiseand

Vibration.London,U.K.:E&FNSpon,1997.

[7]P.Lueg,“Processofsilencingsoundoscillations,”U.S.Patent

2043416,June9,1936.

[8]G.C.GoodwinandK.S.Sin,AdaptiveFilteringPredictionand

Control.EnglewoodCliffs,NJ:Prentice-Hall,1984.

[9]B.WidrowandS.D.Stearns,AdaptiveSignalProcessing.

EnglewoodCliffs,NJ:Prentice-Hall,1985.

[10]C.F.N.CowanandP.M.Grant,AdaptiveFilters.Englewood

Cliffs,NJ:Prentice-Hall,1985.

[11]M.L.HonigandD.G.Messerschmitt,AdaptiveFilters:Struc-tures,Algorithms,andApplications.Boston,MA:Kluwer,1986.

[12]S.T.Alexander,AdaptiveSignalProcessing.NewYork:

Springer-Verlag,1986.

[13]J.R.Treichler,C.R.Johnson,Jr.,andM.G.Larimore,Theory

andDesignofAdaptiveFilters.NewYork:Wiley,1987.[14]M.Bellanger,AdaptiveDigitalFiltersandSignalAnalysis.

NewYork:MarcelDekker,1987.

[15]S.Haykin,AdaptiveFilterTheory,2nded.EnglewoodCliffs,

NJ:Prentice-Hall,1991.

[16]P.M.Clarkson,OptimalandAdaptiveSignalProcessing.

BocaRaton,FL:CRCPress,1993.

[17]J.C.Burgess,“Activeadaptivesoundcontrolinaduct:Acom-putersimulation,”J.Acoust.Soc.Amer.,vol.70,pp.715–726,Sept.1981.

[18]G.E.Warnaka,J.Tichy,andL.A.Poole,“Improvementsin

adaptiveactiveattenuators,”inProc.Inter-noise,1981,pp.307–310.

[19]K.Kido,“Reductionofnoisebyuseofadditionalsound

sources,”inProc.Inter-noise,1975,pp.7–650.

[20]C.F.Ross,“Ademonstrationofactivecontrolofbroadband

sound,”J.SoundVib.,vol.74,no.3,pp.411–417,1981.

[21]S.M.KuoandC.Chen,“Implementationofadaptivefilters

withtheTMS320C25ortheTMS320C30,”inDigitalSignalProcessingApplicationswiththeTMS320Family,vol.3,P.Papamichalis,Ed.EnglewoodCliffs,NJ:Prentice-Hall,1990,ch.7,pp.191–271.

[22]L.J.Eriksson,“Computer-aidedsilencing—Anemergingtech-nology,”SoundVib.,vol.24,pp.42–45,July1990.

[23]M.Nishimura,“Someproblemsofactivenoisecontrolfor

practicaluse,”inProc.Int.Symp.ActiveControlofSoundVibration,1991,pp.157–1.

[24]D.R.Morgan,“Ahierarchyofperformanceanalysistechniques

foradaptiveactivecontrolofsoundandvibration,”J.Acoust.Soc.Amer.,vol.,pp.2362–2369,May1991.

[25]A.Roure,“Self-adaptivebroadbandactivesoundcontrolsys-tem,”J.SoundVib.,vol.101,pp.429–441,1985.

[26]H.F.OlsonandE.G.May,“Electronicsoundabsorber,”J.

Acoust.Soc.Amer.,vol.25,pp.1130–1136,Nov.1953.

[27]H.F.Olson,“Electroniccontrolofnoise,vibration,andre-verberation,”J.Acoust.Soc.Am.,vol.28,pp.966–972,Sept.1956.

[28]G.C.Carter,“Coherenceandtimedelayestimation,”Proc.

IEEE,vol.75,pp.236–255,Feb.1987.

[29]S.M.KuoandJ.Tsai,“Acousticalmechanismsandperfor-manceofvariousactiveductnoisecontrolsystems,”Appl.Acoust.,vol.41,no.1,pp.81–91,1994.

970

[30]S.J.ElliottandP.A.Nelson,“Theapplicationofadaptive

filteringtotheactivecontrolofsoundandvibration,”ISVR,Univ.Southampton,U.K.,Tech.Rep.136,Sept.1985.

[31]D.R.Morgan,“Ananalysisofmultiplecorrelationcancellation

loopswithafilterintheauxiliarypath,”IEEETrans.Acoust.,Speech,SignalProcessing,vol.ASSP-28,pp.454–467,Aug.1980.

[32]B.Widrow,D.Shur,andS.Shaffer,“Onadaptiveinverse

control,”inProc.15thAsilomarConf.,1981,pp.185–1.[33]S.J.ElliottandP.A.Nelson,“Activenoisecontrol,”IEEE

SignalProcessingMag.,vol.10,pp.12–35,Oct.1993.

[34]C.C.Boucher,S.J.Elliott,andP.A.Nelson,“Theeffectsof

modelingerrorsontheperformanceandstabilityofactivenoisecontrolsystems,”inProc.RecentAdvancesinActiveControlofSoundVibration,1991,pp.290–301.[35],“Effectoferrorsintheplantmodelontheperformanceof

algorithmsforadaptivefeedforwardcontrol,”Proc.Inst.Elect.Eng.,pt.F,vol.138,pp.313–319,Aug.1991.

[36]S.D.SnyderandC.H.Hansen,“Theeffectoftransferfunction

estimationerrorsonthefiltered-XLMSalgorithm,”IEEETrans.SignalProcessing,vol.42,pp.950–953,Apr.1994.

[37]G.Long,F.Ling,andJ.G.Proakis,“TheLMSalgorithmwith

delayedcoefficientadaptation,”IEEETrans.Acoust.,Speech,SignalProcessing,vol.37,pp.1397–1405,Sept.19.

,“Correctionsto‘TheLMSalgorithmwithdelayedco-[38]

efficientadaptation’,”IEEETrans.SignalProcessing,vol.40,pp.230–232,Jan.1992.

[39]S.J.Elliott,I.M.Stothers,andP.A.Nelson,“Amultipleerror

LMSalgorithmanditsapplicationtotheactivecontrolofsoundandvibration,”IEEETrans.Acoust.,Speech,SignalProcessing,vol.ASSP-35,pp.1423–1434,Oct.1987.

[40]R.D.Gitlin,H.C.Meadors,andS.B.Weinstein,“Thetap-leakagealgorithm:Analgorithmforthestableoperationofadigitallyimplemented,fractionallyspacedadaptiveequalizer,”BellSyst.Tech.J.,vol.61,pp.1817–1839,Oct.1982.

[41]S.LaugesenandS.J.Elliott,“Multichannelactivecontrolof

randomnoiseinasmallreverberantroom,”IEEETrans.SignalProcessing,vol.1,pp.241–249,Apr.1993.

[42]P.R.EnderleandG.R.Batta,“Stabilityofactivenoisecontrol

systemsinducts,”inProc.Noise-Con,1990,pp.167–172.[43]M.M.SondhiandD.A.Berkley,“Silencingechoesonthe

telephonenetwork,”Proc.IEEE,vol.68,pp.948–963,Aug.1980.

[44]L.A.Poole,G.E.Warnaka,andR.C.Cutter,“Theimplementa-tionofdigitalfilterusingamodifiedWidrow-Hoffalgorithmfortheadaptivecancellationofacousticnoise,”inProc.ICASSP,1984,pp.21.7.1–21.7.4.

[45]J.R.Treichler,“Adaptivealgorithmsforinfiniteimpulsere-sponsefilters,”inAdaptiveFilters,C.F.N.CowanandP.M.Grant,Eds.EnglewoodCliffs,NJ:Prentice-Hall,1985,ch.4.[46]J.J.Shynk,“AdaptiveIIRfiltering,”IEEEAcoust.Speech

SignalProcessingMag.,Apr.19,pp.4–21.

[47]L.J.Eriksson,M.C.Allie,andR.A.Greiner,“Theselection

andapplicationofanIIRadaptivefilterforuseinactivesoundattenuation,”IEEETrans.Acoust.,Speech,SignalProcessing,vol.ASSP-35,pp.433–437,Apr.1987.

[48]P.L.Feintuch,“AnadaptiverecursiveLMSfilter,”Proc.IEEE,

vol.,pp.1622–1624,Nov.1976.

[49]L.J.Eriksson,“Developmentofthefiltered-Ualgorithmforac-tivenoisecontrol,”J.Acoust.Soc.Amer.,vol.,pp.257–265,Jan.1991.

[50]M.L.MunjalandL.J.Eriksson,“Ananalytical,one-dimensional,standing-wavemodelofalinearactivenoisecontrolsysteminaduct,”J.Acoust.Soc.Amer.,vol.84,pp.1086–1093,Sept.1988.

[51]L.J.Eriksson,M.C.Allie,C.D.Bremigan,andJ.A.Gilbert,

“Activenoisecontrolonsystemswithtime-varyingsourcesandparameters,”SoundVibration,vol.23,pp.16–21,July19.[52]M.G.Larimore,J.R.Treichler,andC.R.Johnson,Jr.,

“SHARF:AnalgorithmforadaptiveIIRdigitalfilters,”IEEETrans.Acoust.,Speech,SignalProcessing,vol.ASSP-28,pp.428–440,Aug.1980.

[53]S.M.KuoandJ.Tapia,“Theimplementationofmodified

leakySHARFalgorithmfortheactivenoisecancellation,”inProc.IEEEASSPWorkshopApplicationsofSignalProcessingtoAudioandAcoustics,19.

[54]S.J.ElliottandP.Darlington,“Adaptivecancellationof

periodic,synchronouslysampledinterference,”IEEETrans.

PROCEEDINGSOFTHEIEEE,VOL.87,NO.6,JUNE1999

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

[55][56]

[57][58][59][60][61][62]

[63][]

[65][66][67][68][69][70][71][72][73][74][75][76][77][78][79][80][81]

Acoust.,Speech,SignalProcessing,vol.ASSP-33,pp.715–717,June1985.

B.Chaplin,“Thecancellationofrepetitivenoiseandvibration,”inProc.Inter-noise,1980,pp.699–702.

B.Widrow,J.R.Glover,J.M.McCool,J.Kaunitz,C.S.Williams,R.H.Hern,J.R.Zeidler,E.Dong,andR.C.Goodlin,“Adaptivenoisecanceling:Principlesandapplications,”Proc.IEEE,vol.63,pp.1692–1716,Dec.1975.

E.Ziegler,Jr.,“Selectiveactivecancellationsystemforrepeti-tivephenomena,”U.S.Patent4878188,Oct.31,19.

P.DarlingtonandS.J.Elliott,“Stabilityandadaptivelycon-trolledsystems—Agraphicalapproach,”inProc.ICASSP,1987,pp.399–402.

,“Synchronousadaptivefilterswithdelayedcoefficientadaptation,”inProc.ICASSP,1988,pp.2586–25.

D.R.MorganandJ.Thi,“Amultitonepseudocascadefiltered-XLMSadaptivenotchfilter,”IEEETrans.SignalProcessing,vol.41,pp.946–956,Feb.1993.

J.R.Glover,Jr.,“Adaptivenoisecancelingappliedtosinusoidalinterferences,”IEEETrans.Acoust.,Speech,SignalProcessing,vol.ASSP-25,pp.484–491,Dec.1977.

D.R.MorganandC.Sanford,“Acontroltheoryapproachtothestabilityandtransientanalysisofthefiltered-XLMSadaptivenotchfilter,”IEEETrans.SignalProcessing,vol.40,pp.2341–2346,Sept.1992.

S.M.KuoandM.Ji,“Passbanddisturbancereductioninperiodicactivenoisecontrolsystems,”IEEETrans.SpeechAudioProcessing,vol.4,pp.96–103,Mar.1996.

S.M.Kuo,S.Zhu,andM.Wang,“Developmentofoptimumadaptivenotchfilterforfixed-pointimplementationinactivenoisecontrol,”inProc.1992Int.Conf.IndustrialElectronics,1992,pp.1376–1378.

D.P.Pfaff,N.S.Kapsokavathis,andN.A.Parks,“Methodforactivelyattenuatingenginegeneratednoise,”U.S.Patent5146505,Sept.8,1992.

Y.Yuan,N.S.Kapsokavathis,K.Chen,andS.M.Kuo,“Activenoisecontrolsystem,”U.S.Patent5359662,Oct.25,1994.S.M.Kuo,M.J.Ji,M.K.Christensen,andR.A.Herold,“Indirectlysensedsignalprocessinginactiveperiodicacousticnoisecancellation,”U.S.Patent5502770,Mar.26,1996.P.D.Hill,“Activeacousticattenuationsystemforreducingtonalnoiseinrotatingequipment,”U.S.Patent5010576,Apr.23,1991.

S.M.KuoandM.J.Ji,“Developmentandanalysisofanadap-tivenoiseequalizer,”IEEETrans.SpeechAudioProcessing,vol.3,pp.217–222,May1995.

S.M.Kuo,M.Tahernezhadi,andL.Ji,“Frequency-domainperiodicactivenoisecontrolandequalization,”IEEETrans.SpeechAudioProcessing,vol.5,pp.348–358,July1997.S.M.KuoandY.Yang,“Broadbandadaptivenoiseequalizer,”IEEESignalProcessingLett.,vol.3,pp.234–235,Aug.1996.L.J.Eriksson,“Recursivealgorithmsforactivenoisecontrol,”inProc.Int.Symp.ActiveControlofSoundVibration,1991,pp.137–146.

S.R.Popovich,D.E.Melton,andM.C.Allie,“Newadaptivemulti-channelcontrolsystemsforsoundandvibration,”inProc.Inter-noise,1992,pp.405–408.

S.M.KuoandD.Vijayan,“Adaptivefeedbackactivenoisecontrol,”inProc.Noise-Con,1994,pp.473–478.

S.J.ElliottandT.J.Sutton,“Performanceoffeedforwardandfeedbacksystemsforactivecontrol,”IEEETrans.SpeechAudioProcessing,vol.4,pp.214–223,May1996.

D.GraupeandA.J.Efron,“Anoutput-whiteningapproachtoadaptiveactivenoisecancellation,”IEEETrans.CircuitsSyst.II,vol.38,pp.1306–1313,Nov.1991.

A.J.EfronandL.C.Han,“Wide-areaadaptiveactivenoisecan-cellation,”IEEETrans.CircuitsSyst.II,vol.41,pp.405–409,June1994.

A.V.Oppenheim,E.Weinstein,K.C.Zangi,M.Feder,andD.Gauger,“Single-sensoractivenoisecancellation,”IEEETrans.SpeechAudioProcessing,vol.2,pp.285–290,Apr.1994.K.C.Zangi,“Anewtwo-sensoractivenoisecancellationalgorithm,”inProc.ICASSP,vol.II,1993,pp.351–354.

D.C.Swanson,“Activenoiseattenuationusingaself-tuningregulatorastheadaptivecontrolalgorithm,”inProc.Inter-noise,19,pp.467–470.

S.J.Elliott,I.M.Stothers,P.A.Nelson,A.M.McDonald,D.C.Quinn,andT.Saunders,“Theactivecontrolofenginenoiseinsidecars,”inProc.Inter-noise,1988,pp.987–990.[82]A.M.McDonald,S.J.Elliott,andM.A.Stokes,“Activenoise

andvibrationcontrolwithintheautomobile,”inProc.Int.Symp.ActiveControlofSoundVibration,1991,pp.147–156.

[83]Y.KurataandN.Koike,“Adaptiveactiveattenuationofinterior

carnoise,”inProc.Int.Symp.ActiveControlofSoundVibration,1991,pp.297–302.

[84]C.F.Ross,“Thecontrolofnoiseinsidepassengervehicles,”

inProc.RecentAdvancesinActiveControlofSoundVibration,1991,pp.671–681.

[85]S.M.KuoandB.M.Finn,“Ageneralmulti-channelfiltered

LMSalgorithmfor3-Dactivenoisecontrolsystems,”inProc.2ndInt.Conf.RecentDevelopmentsinAir-andStructure-BorneSoundVib.,1992,pp.345–352.

[86]M.A.Simpson,T.M.Luong,M.A.Swinbanks,M.A.Russell,

andH.G.Leventhall,“Fullscaledemonstrationtestsofcabinnoisereductionusingactivenoisecontrol,”inProc.Inter-noise,19,pp.459–462.

[87]C.M.Dorling,G.P.Eatwell,S.M.Hutchins,C.F.Ross,and

S.G.C.Sutcliffe,“Ademonstrationofactivenoisereductioninanaircraftcabin,”J.SoundVibration,vol.128,no.2,pp.358–360,19.

[88]S.J.Elliott,P.A.Nelson,I.M.Stothers,andC.C.Boucher,

“In-flightexperimentsontheactivecontrolofpropeller-inducedcabinnoise,”J.SoundVibration,vol.140,no.2,pp.219–238,1990.

[]P.A.Nelson,A.R.D.Curtis,S.J.Elliott,andA.J.Bullmore,

“Theactiveminimizationofharmonicenclosedsoundfields,PartI:Theory,”J.SoundVibration,vol.117,no.1,pp.1–13,1987.

[90]A.J.Bullmore,P.A.Nelson,A.R.D.Curtis,andS.J.Elliott,

“Theactiveminimizationofharmonicenclosedsoundfields,PartII:Acomputersimulation,”J.SoundVibration,vol.117,no.1,pp.15–33,1987.

[91]S.J.Elliott,A.R.D.Curtis,A.J.Bullmore,andP.A.Nelson,

“Theactiveminimizationofharmonicenclosedsoundfields,PartIII:Experimentalverification,”J.SoundVibration,vol.117,no.1,pp.35–58,1987.

[92]S.J.Elliott,C.C.Boucher,andP.A.Nelson,“Thebehaviorof

amultiplechannelactivecontrolsystem,”IEEETrans.SignalProcessing,vol.40,pp.1041–1052,May1992.

[93]P.A.Nelson,A.R.D.Curtis,S.J.Elliott,andA.J.Bullmore,

“Theminimumpoweroutputoffreefieldpointsourcesandtheactivecontrolofsound,”J.SoundVibration,vol.116,no.3,pp.397–414,1987.

[94]D.C.Swanson,“Thegeneralizedmultichannelfiltered-Xalgo-rithm,”inProc.RecentAdvancesinActiveControlofSoundVibration,1993,pp.550–561.

[95]S.J.ElliottandC.C.Boucher,“Interactionbetweenmultiple

feedforwardactivecontrolsystems,”IEEETrans.SpeechAudioProcessing,vol.2,pp.521–530,Oct.1994.

[96]D.E.MeltonandR.A.Greiner,“Adaptivefeedforward

multiple-input,multiple-outputactivenoisecontrol,”inProc.ICASSP,vol.II,1992,pp.229–232.

[97]S.M.KuoandD.Vijayan,“Adaptivealgorithmsandexperi-mentalverificationoffeedbackactivenoisecontrolsystems,”NoiseControlEng.J.,vol.42,pp.37–46,Mar.–Apr.1994.[98]S.P.Rubenstein,S.R.Popovich,D.E.Melton,andM.C.

Allie,“Activecancellationofhighermodesinaductusingrecursively-coupledmultichanneladaptivecontrolsystem,”inProc.Inter-noise,1992,pp.337–340.

[99]L.J.ErikssonandM.C.Allie,“Useofrandomnoiseforon-line

transducermodelinginanadaptiveactiveattenuationsystem,”J.Acoust.Soc.Amer.,vol.85,pp.797–802,Feb.19.

[100]C.Bao,P.Sas,andH.VanBrussel,“Adaptiveactivenoisecon-trolina3-Dreverberantenclosure,”inProc.RecentAdvancesinActiveControlofSoundVibration,1991,pp.691–707.

,“Adaptiveactivecontrolofnoisein3-Dreverberant[101]

enclosures,”J.SoundVibration,vol.161,no.3,pp.501–514,1993.

[102]S.M.KuoandD.Vijayan,“Asecondarypathmodeling

techniqueforactivenoisecontrolsystems,”IEEETrans.SpeechAudioProcessing,vol.5,pp.374–377,July1997.

[103]S.D.SommerfeldtandJ.Tichy,“Adaptivevibrationcontrol

usinganLMS-basedcontrolalgorithm,”inProc.Inter-noise,19,pp.513–518.[104],“Adaptivecontrolofatwo-stagevibrationisolation

mount,”J.Acoust.Soc.Amer.,vol.88,pp.938–944,Aug.1990.[105]J.TapiaandS.M.Kuo,“Newadaptiveon-linemodeling

971

KUOANDMORGAN:ACTIVENOISECONTROL

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

[106][107][108]

[109][110][111][112]

[113][114]

[115][116][117]

[118][119][120]

[121][122][123][124][125][126]

[127]

[128]

[129]

techniqueforactivenoisecontrolsystems,”inProc.IEEEInt.Conf.SystemsEngineering,1990,pp.280–283.

S.M.KuoandM.Wang,“Paralleladaptiveon-lineerror-pathmodelingalgorithmforactivenoisecontrolsystems,”Electron.Lett.,vol.28,pp.375–377,Feb.1992.

S.M.Kuo,M.Wang,andK.Chen,“Activenoisecontrolsystemwithparallelon-lineerrorpathmodelingalgorithm,”NoiseControlEng.J.,vol.39,pp.119–127,Nov.–Dec.1992.S.M.KuoandJ.Luan,“Multiple-channelerrorpathmod-elingwiththeinter-channeldecouplingalgorithm,”inProc.RecentAdvancesinActiveControlofSoundVibration,1993,pp.767–777.

S.D.Sommerfeldt,“Multi-channeladaptivecontrolofstruc-turalvibration,”NoiseControlEng.J.,vol.37,pp.77–,Sept.–Oct.,1991.

S.M.KuoandB.M.Finn,“Anintegratedaudioandactivenoisecontrolsystem,”inProc.IEEEInt.Symp.CircuitsSyst.,1993,pp.2529–2532.

S.M.Kuo,H.Chuang,andP.Mallela,“Integratedhands-freecellular,activenoisecontrol,andaudiosystem,”IEEETrans.ConsumerElectron.,vol.39,pp.522–532,Aug.1993.

R.W.Harris,D.M.Chabries,andF.A.Bishop,“Avari-ablestep(VS)adaptivefilteralgorithm,”IEEETrans.Acoust.,Speech,SignalProcessing,vol.ASSP-34,pp.309–316,Apr.1986.

C.Kwong,“Dualsignalgorithmforadaptivefiltering,”IEEETrans.Commun.,vol.COM-34,pp.1272–1275,Dec.1986.W.B.Mikhael,F.H.Wu,L.G.Kazovsky,G.S.Kang,andL.J.Fransen,“Adaptivefilterswithindividualadaptationofparameters,”IEEETrans.CircuitsSyst.,vol.CAS-33,pp.677–685,July1986.

T.J.ShanandT.Kailath,“Adaptivealgorithmswithanautomaticgaincontrolfeature,”IEEETrans.CircuitsSyst.,vol.CAS-35,pp.122–127,Jan.1988.

H.Hamada,T.Miura,M.Takahashi,andY.Oguri,“Adaptivenoisecontrolsysteminair-conditioningducts,”inProc.Inter-noise,1988,pp.1017–1020.

M.Takahashi,R.Gotohda,T.Yamadera,K.Asami,andH.Hamada,“Broadbandactivenoisecontrolofair-conditioningductsystemsinauditoriums,”inProc.Int.Symp.ActiveControlofSoundVibration,1991,pp.273–278.

L.J.Griffiths,“Acontinuouslyadaptivefilterimplementedasalatticestructure,”inProc.ICASSP,1977,pp.683–686.

,“Anadaptivelatticestructurefornoisecancelingappli-cations,”inProc.ICASSP,1978,pp.87–90.

S.M.KuoandJ.Luan,“Cross-coupledfiltered-XLMSalgo-rithmandlatticestructureforactivenoisecontrolsystems,”inProc.1993IEEEInt.Symp.CircuitsSystems,1993,pp.459–462.

K.CharandS.M.Kuo,“Performanceevaluationofvariousactivenoisecontrolalgorithms,”inProc.Noise-Con,1994,pp.331–336.

M.Dentino,J.M.McCool,andB.Widrow,“Adaptivefilteringinthefrequencydomain,”Proc.IEEE,vol.66,pp.1658–1659,Dec.1978.

E.R.Ferrara,Jr.,“Frequency-domainadaptivefiltering,”inAdaptiveFiltering,C.CowanandP.Grant,Eds.EnglewoodCliffs,NJ:Prentice-Hall,1985,ch.6.

N.Ahmed,T.Natarajan,andK.R.Rao,“Discretecosinetransform,”IEEETrans.Comput.,vol.C-23,pp.90–93,1974.R.N.Bracewell,“ThefastHartleytransform,”Proc.IEEE,vol.72,pp.1010–1018,Aug.1984.

Q.ShenandA.Spanias,“TimeandfrequencydomainX-blockLMSalgorithmsforsinglechannelactivenoisecontrol,”inProc.2ndInt.Congr.RecentDevelopmentsinAir-andStructure-BorneSoundVibration,1992,pp.353–360.

K.M.ReichardandD.C.Swanson,“Frequency-domainim-plementationofthefiltered-Xalgorithmwithon-linesystemidentification,”inProc.RecentAdvancesinActiveControlofSoundVibration,1993,pp.562–573.

Q.ShenandA.Spanias,“Frequency-domainadaptivealgo-rithmsformulti-channelactivesoundcontrol,”inProc.Re-centAdvancesinActiveControlofSoundVibration,1993,pp.755–766.

M.M.SondhiandW.Kellermann,“Adaptiveechocancellationforspeechsignals,”inAdvancesinSpeechSignalProcessing,S.FuruiandM.Sondhi,Eds.NewYork:MarcelDekker,1992,ch.11.[130]J.J.Shynk,“Frequency-domainandmultirateadaptivefilter-ing,”IEEESignalProcessingMag.,vol.9,pp.14–37,Jan.1992.

[131]J.ThiandD.R.Morgan,“Delaylesssubbandactivenoise

control,”inProc.ICASSP,vol.I,1993,pp.181–184.

[132]D.R.MorganandJ.Thi,“Adelaylesssubbandadaptivefilter,”

IEEETrans.SignalProcessing,vol.8,pp.1819–1830,Aug.1995.

[133]J.M.CioffiandT.Kailath,“Fast,recursive-least-squares

transversalfiltersforadaptivefiltering,”IEEETrans.Acoust.,Speech,SignalProcessing,vol.ASSP-32,pp.304–337,Apr.1984.

[134]L.Meirovitch,IntroductiontoDynamicsandControl.New

York:Wiley,1985.

[135]L.Meirovitch,H.Baruh,andH.Oz,“Comparisonofcontrol

techniquesforlargeflexiblesystems,”J.Guid.ControlDyn.,vol.6,pp.302–310,July–Aug.1983.

[136]L.MeirovitchandH.Baruh,“Robustnessoftheindependent

modal-spacecontrolmethod,”J.Guid.ControlDyn.,vol.6,pp.20–25,Jan.–Feb.1983.

[137]H.BaruhandL.Silverberg,“Robustnaturalcontrolofdis-tributedsystems,”J.Guid.ControlDyn.,vol.8,pp.717–724,Nov.–Dec.1985.

[138]D.R.Morgan,“Anadaptivemodal-basedactivecontrolsys-tem,”J.Acoust.Soc.Amer.,vol.,pp.248–256,Jan.1991.[139]C.P.Nowicki,D.P.Mendat,andD.G.Smith,“Active

attenuationofmotor/blowernoise,”inProc.Noise-Con,1994,pp.415–420.

[140]J.N.Denenberg,“Anti-noise—Quietingtheenvironmentwith

activenoisecancellationtechnology,”IEEEPotentials,vol.11,pp.36–40,Apr.1992.

[141]K.EghtesadiandE.Ziegler,“Frequencydomainadaptive

controlalgorithmforelectronicmufflerapplications,”inProc.RecentAdvancesinActiveControlofSoundVib.,1993,pp.574–585.

[142]G.B.B.Chaplin,R.A.Smith,andT.P.C.Bramer,“Method

andapparatusforreducingrepetitivenoiseenteringtheear,”U.S.Patent4654871,Mar.31,1987.

[143]D.A.Quinlan,“Applicationofactivecontroltoaxialflow

fans,”NoiseControlEng.J.,vol.39,pp.95–101,Nov.–Dec.1992.

[144]M.P.McLonghlin,K.Eghtesadi,D.G.Smith,andE.W.

Ziegler,Jr.,“Activecontrolofbladepassagenoiseinsmallcentrifugalfanswithmultipletransducers,”inProc.Inter-noise,1992,pp.325–328.

[145]D.L.SutliffandR.T.Nagel,“Developmentofanactivenoise

controlsystemforductedfans(withoutacousticfeedback),”inProc.RecentAdvancesinActiveControlofSoundVib.,1993,pp.825–836.

[146]T.J.Sutton,S.J.Elliott,A.M.McDonald,andT.J.Saunders,

“Activecontrolofroadnoiseinsidevehicles,”NoiseControlEng.J.,vol.42,pp.137–147,July–Aug.1994.

[147]C.R.FullerandJ.D.Jones,“Experimentsonreductionof

propellerinducedinteriornoisebyactivecontrolofcylindervibration,”J.SoundVib.,vol.112,pp.3–395,1987.

[148]C.R.FullerandG.P.Gibbs,“Activecontrolofinteriornoise

inabusinessjetusingpiezoceramicactuators,”inProc.Noise-Con,1994,pp.3–394.

[149]A.OmotoandK.Fujiwara,“Astudyofanactivelycontrolled

noisebarrier,”J.Acoust.Soc.Am.,vol.94,pp.2173–2180,Oct.1993.

[150]S.E.CraigandO.L.Angevine,“Activecontrolofhum

fromlargepowertransformers—Therealworld,”inProc.RecentAdvancesinActiveControlofSoundVibration,1993,pp.279–290.

[151]K.Kido,“Fromonepointtothreedimensioncontrol,”inProc.

Int.Symp.ActiveControlofSoundVibration,1991,pp.1–10.[152]D.R.BrowningandD.R.Morgan,“Apseudo-cascadeFXLMS

approachtoactivevibrationcancellation,”inProc.Noise-Con,1991,pp.353–360.

[153]B.M.Finn,“Threedimensionalactivenoisecontrolwith

integratedaudiocapabilities,”M.S.thesis,NorthernIllinoisUniv.,DeKalb,IL.1992.

[154]J.Luan,“On-linemodelingandfeedbackcompensationtech-niquesfor3-dactivenoisecontrolsystems,”M.S.thesis,NorthernIllinoisUniv.,DeKalb,IL,May1993.

[155]M.J.Ji,“Narrowbandactivenoisecontrolandequalization,”

M.S.thesis,NorthernIllinoisUniv.,DeKalb,IL,Aug.1993.

PROCEEDINGSOFTHEIEEE,VOL.87,NO.6,JUNE1999

972

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

[156]D.Vijayan,Feedbackactivenoisecontrolsystems,M.S.thesis,

NorthernIllinoisUniv.,DeKalb,IL,May1994.

SenM.KuoreceivedtheB.S.degreefromNationalTaiwanNormalUniversity,Teipei,Taiwan,in1976andtheM.S.andPh.D.degreesfromUniversityofNewMexico,Albuquerque,in1983and1985,respectively.

In1993,hewaswithTexasInstruments,Houston,TX.HeiscurrentlyanAssociateProfessorattheDepartmentofElectricalEngineering,NorthernIllinoisUniversity,DeKalb,IL.Hehasservedasaconsultantintheareasofdigitalsignalprocessingapplications

toGeneralMotors,TexasInstruments,Motorola,Tellabs,andothers.HeistheauthorofActiveNoiseControlSystems:AlgorithmsandDSPImplementations(NewYork:Wiley,1996)andofnumeroustechnicalpapers.Hehasbeenawardedtwopatents.Hisresearchfocusesonactivenoisecontrol,adaptiveechocancellation,digitalaudioapplications,anddigitalcommunications.

In1993,Dr.KuoreceivedtheIEEEConsumerElectronicsSocietyChesterSallAwardfortheFirstPlaceTransactionsPaperAward.HeisamemberofEtaKappaNu.

DennisR.Morgan(SeniorMember,IEEE)wasborninCincinnati,OH,onFebruary19,1942.HereceivedtheB.S.degreein1965fromtheUniversityofCincinnati,OH,andtheM.S.andPh.D.degreesfromSyracuseUniversity,Syracuse,NY,in1968and1970,respectively,allinelectricalengineering.

From1965to1984,hewaswiththeGen-eralElectricCompany,ElectronicsLaboratory,Syracuse,NY,specializingintheanalysisanddesignofsignalprocessingsystemsusedin

radar,sonar,andcommunications.HeisnowaDistinguishedMemberofTechnicalStaffatBellLaboratories,LucentTechnologies(formerlyAT&T),MurrayHill,NJ,wherehehasbeenemployedsince1984.From1984to1990,hewaswiththeSpecialSystemsAnalysisDepartment,Whippany,NJ,wherehewasinvolvedintheanalysisanddevelopmentofadvancedsignalprocessingtechniquesassociatedwithcommunications,arrayprocessing,detectionandestimation,andadaptivesystems.Since1990,hehasbeenwiththeAcousticsResearchDepartment,whereheisengagedinresearchonadaptivesignalprocessingtechniquesappliedtoelectroacousticsystems.Hehasauthorednumerousjournalpublicationsandisco-athorofActiveNoiseControlSystems:AlgorithmsandDSPImplementations(NewYork:Wiley,1996).

Dr.MorganhasservedasAssociateEditorforIEEETRANSACTIONSONSPEECHANDAUDIOPROCESSINGsince1995.

KUOANDMORGAN:ACTIVENOISECONTROL

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.

973

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo0.cn 版权所有 湘ICP备2023017654号-2

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务