SENM.KUOANDDENNISR.MORGAN,SENIORMEMBER,IEEE
Activenoisecontrol(ANC)isachievedbyintroducingacancel-ing“antinoise”wavethroughanappropriatearrayofsecondarysources.Thesesecondarysourcesareinterconnectedthroughanelectronicsystemusingaspecificsignalprocessingalgorithmfortheparticularcancellationscheme.ANChasapplicationtoawidevarietyofproblemsinmanufacturing,industrialoperations,andconsumerproducts.TheemphasisofthispaperisonthepracticalaspectsofANCsystemsintermsofadaptivesignalprocessinganddigitalsignalprocessing(DSP)implementationforreal-worldapplications.
Inthispaper,thebasicadaptivealgorithmforANCisdevelopedandanalyzedbasedonsingle-channelbroad-bandfeedforwardcontrol.Thisalgorithmisthenmodifiedfornarrow-bandfeedfor-wardandadaptivefeedbackcontrol.Inturn,thesesingle-channelANCalgorithmsareexpandedtomultiple-channelcases.Variousonlinesecondary-pathmodelingtechniquesandspecialadap-tivealgorithms,suchaslattice,frequency-domain,subband,andrecursive-least-squares,arealsointroduced.Applicationsofthesetechniquestoactualproblemsarehighlightedbyseveralexamples.Keywords—Activenoisecontrol,activevibrationcontrol,adap-tivenoisecancellation,adaptivesystems,digitalsignalprocessing(DSP)applications.
I.INTRODUCTION
A.Overview
Acousticnoiseproblemsbecomemoreandmoreevidentasincreasednumbersofindustrialequipmentsuchasengines,blowers,fans,transformers,andcompressorsareinuse.Thetraditionalapproachtoacousticnoisecontrolusespassivetechniquessuchasenclosures,barriers,andsilencerstoattenuatetheundesirednoise[1],[2].Thesepassivesilencersarevaluedfortheirhighattenuationoverabroadfrequencyrange;however,theyarerelativelylarge,costly,andineffectiveatlowfrequencies.Mechanicalvibrationisanotherrelatedtypeofnoisethatcommonlycreatesproblemsinallareasoftransportationandmanu-facturing,aswellaswithmanyhouseholdappliances.Activenoisecontrol(ANC)[3]–[6]involvesanelec-troacousticorelectromechanicalsystemthatcancelstheprimary(unwanted)noisebasedontheprincipleofsuper-position;specifically,anantinoiseofequalamplitudeand
ManuscriptreceivedJune1,1997;revisedDecember18,1998.
S.M.KuoiswiththeDepartmentofElectricalEngineering,NorthernIllinoisUniversity,DeKalb,IL60115USA.
D.R.MorganiswithBellLaboratories,LucentTechnologies,MurrayHill,NJ07974-0636USA.
PublisherItemIdentifierS0018-9219(99)04043-8.
oppositephaseisgeneratedandcombinedwiththeprimarynoise,thusresultinginthecancellationofbothnoises.TheANCsystemefficientlyattenuateslow-frequencynoisewherepassivemethodsareeitherineffectiveortendtobeveryexpensiveorbulky.ANCisdevelopingrapidlybecauseitpermitsimprovementsinnoisecontrol,oftenwithpotentialbenefitsinsize,weight,volume,andcost.ThedesignofacousticANCutilizingamicrophoneandanelectronicallydrivenloudspeakertogenerateacancelingsoundwasfirstproposedina1936patentbyLueg[7].Sincethecharacteristicsoftheacousticnoisesourceandtheenvironmentaretimevarying,thefrequencycontent,amplitude,phase,andsoundvelocityoftheundesirednoisearenonstationary.AnANCsystemmustthereforebeadaptiveinordertocopewiththesevariations.Adaptivefilters[8]–[16]adjusttheircoefficientstominimizeanerrorsignalandcanberealizedas(transversal)finiteimpulseresponse(FIR),(recursive)infiniteimpulseresponse(IIR),lattice,andtransform-domainfilters.Themostcommonformofadaptivefilteristhetransversalfilterusingtheleast-mean-square(LMS)algorithm.Anearlyductcancellationsystembasedonadaptivefiltertheorywasdevelopedin[17]and[18].
Itisdesirableforthenoisecancelertobedigital[19],[20],wheresignalsfromelectroacousticorelectromechani-caltransducersaresampledandprocessedinrealtimeusingdigitalsignalprocessing(DSP)systems.Inthe1980’s,de-velopmentofDSPchipsenabledlow-costimplementationofpowerfuladaptivealgorithms[21]andencouragedwide-spreaddevelopmentandapplicationofANCsystems[22].ThecontinuousprogressofANCinvolvesthedevelopmentofimprovedadaptivesignalprocessingalgorithms,trans-ducers,andDSPhardware.Moresophisticatedalgorithmsallowfasterconvergenceandgreaternoiseattenuationandaremorerobusttointerference.ThedevelopmentofimprovedDSPhardwareallowsthesemoresophisticatedalgorithmstobeimplementedinrealtimetoimprovesystemperformance.
Inthispaper,noiseisdefinedasanykindofundesirabledisturbance,whetheritisbornebyelectrical,acoustic,vibration,oranyotherkindofmedia.Therefore,ANCalgorithmsintroducedinthispapercanbeappliedtodifferenttypesofnoiseusingappropriatesensorsandsecondarysources.Forelectricalengineersinvolvedinthe
0018–9219/99$10.00©1999IEEE
PROCEEDINGSOFTHEIEEE,VOL.87,NO.6,JUNE1999
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
943
developmentofANCsystems,[3],[5],and[6]provideexcellentintroductiontoacousticsandvibration.B.CurrentApplications
ANCisanattractivemeanstoachievelargeamountsofnoisereductioninasmallpackage,particularlyatlowfrequencies.ManyapplicationsofANCinvolvingrealandsimulatedexperimentsareintroducedin[4].CurrentapplicationsforANCincludeattenuationofunavoidablenoiseinthefollowingendequipment.
1)Automotive:Includingelectronicmufflersforexhaustandinductionsystems,noiseattenuationinsidevehiclepassengercompartments,activeenginemounts,andsoon.2)Appliances:Includingair-conditioningducts,airconditioners,refrigerators,kitchenexhaustfans,washingmachines,furnaces,dehumidifiers,lawnmowers,vacuumcleaners,headboards,roomisolation,andsoon.
3)Industrial:Fans,airducts,chimneys,transformers,powergenerators,blowers,compressors,pumps,chainsaws,windtunnels,noisyplants(atnoisesourcesormanylocalquietzones),publicphonebooths,officecubiclepartitions,earprotectors,headphones,andsoon.
4)Transportation:Airplanes,ships,boats,pleasuremo-torboats,helicopters,snowmobiles,motorcycles,diesello-comotives,andsoon.
C.PerformanceEvaluationandPracticalConsiderationsWhenANCisdeployedinrealapplications,manyprac-ticalproblemsariseandneedtobeaddressed[23].Anap-proachtoadaptiveANCperformanceanalysisthatinvolvesahierarchyoftechniques,startingwithanidealsimplifiedproblemandprogressivelyaddingpracticalconstraintsandothercomplexities,isessential[24].Performanceanalysisresolvesthefollowingissues:1)thefundamentalperfor-mancelimitations;2)thepracticalconstraintsthatlimitperformance;3)performancebalancedagainstcomplexity;and4)howtodetermineapracticaldesignarchitecture.Ateachstep,adegreeofconfidenceisgainedandabenchmarkisestablishedforcomparisonandcrosscheckingwiththenextlevelofcomplexity.
Inordertobesuitableforindustrialuse,theANCsystemmusthavecertainproperties[25]:1)maximumefficiencyoverthelargestfrequencybandpossibletocancelawiderangeofnoise;2)autonomywithregardtotheinstallation,sothatthesystemcouldbebuiltandpresetinthemanufacturingareaandtheninsertedonsite;3)selfadaptabilityofthesysteminordertodealwithanyvariationsinthephysicalparameters(temperature,airflowspeed,etc.);and4)robustnessandreliabilityofthedifferentelementsofthesystemandsimplificationofthecontrolelectronics.
D.PaperOutline
ANCisbasedoneitherfeedforwardcontrol,whereacoherentreferencenoiseinputissensedbeforeitpropagatespastthesecondarysource,orfeedbackcontrol[26],[27],wheretheactivenoisecontrollerattemptstocancelthe
944
Fig.1.Single-channelbroad-bandfeedforwardANCsysteminaduct.
noisewithoutthebenefitofan“upstream”referenceinput.StructuresforfeedforwardANCareclassifiedinto1)broad-bandadaptivefeedforwardcontrolwithareferencesensor,whichwillbediscussedinSectionII,and2)narrow-bandadaptivefeedforwardcontrolwithareferencesensorthatisnotinfluencedbythecontrolfield(e.g.,tachometer),whichwillbepresentedinSectionIII.InSectionIV,theconceptofadaptivefeedbackANCwillbedevelopedfromthestandpointofreferencesignalsynthesis,therebyprovidingalinktothefeedforwardsystemsinprevioussections.InSectionV,thesesingle-channelANCsystemswillbeexpandedtomultiple-channelcases.SectionVIwillintro-ducevariousonlinesecondary-pathmodelingtechniques.SectionVIIwillintroducevariousspecialANCalgorithmssuchaslatticeANC,frequency-domainANC,subbandANC,andrecursive-least-squares(RLS).Finally,severalexamplesapplyingANCtoreal-worldproblemswillbehighlightedinSectionVIII.
II.BROAD-BANDFEEDFORWARDANC
Thissectionconsidersbroad-bandfeedforwardANCsystemsthathaveasinglereferencesensor,singlesec-ondarysource,andsingleerrorsensor.Thisgenrewillbeexemplifiedbythesingle-channelduct-acousticANCsystemshowninFig.1,wherethereferenceinputispickedupbyamicrophone.ThereferencesignalisprocessedbytheANCsystemtogeneratethecontrolsignaltodrivealoudspeaker.TheerrormicrophoneisusedtomonitortheperformanceoftheANCsystem.Theobjectiveofthecontrolleristominimizethemeasuredacousticnoise.Notethatthissetupisonlyusedasanexampleofbroad-bandANC;thegeneraltechniquesarewidelyapplicabletoavarietyofacousticandvibrationproblems.
A.BasicPrinciples
Thebasicbroad-bandANCsystemshowninFig.1isdescribedinanadaptivesystemidentificationframework
isillustratedinFig.2,inwhichanadaptivefilter
usedtoestimateanunknownplant
consistsoftheacousticresponsefromthereferencesensortotheerrorsensorwherethenoiseattenuationistoberealized.Iftheplantisdynamic,theadaptivealgorithmthenhasthetaskofcontinuouslytrackingtimevariationsoftheplantdynamics.ThemostimportantdifferencebetweenFig.2andthetraditionalsystemidentificationschemeistheuseofanacousticsummingjunctioninsteadofthesubtractionofelectricalsignals.However,forconsistency
PROCEEDINGSOFTHEIEEE,VOL.87,NO.6,JUNE1999
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
Fig.2.SystemidentificationviewpointofANC.
wewillcontinuetorepresentthesummingjunctionbyasubtraction;itisreallyarbitraryanywaybecauseitcanbeimplementedwithasignchangeofthesecondarysignal[4].
istominimizeTheobjectiveoftheadaptivefilter
theresidualerrorsignalaftertheadaptivefilterconverges.Wethenhave
for
isidenticalandtotheprimarydisturbance
areacousticallycombined,theresidualerroris
from
to
-transformoftheerrorsignalis
isgivenby[4]
(1)
isthemagnitude-squaredcoherencefunctionwhere
[28]betweentwowide-sensestationaryrandomprocesses
andistheautopowerspectrumof
Thisrequires
].
torealizetheoptimaltransferfunction
and
hastosimulta-neouslymodel
indecibelsisgivenby
shown
in(3).Itisimpossibletocompensatefortheinherentdelay
doesnotcontainadueto
delayofatleastequallength.
C.Filtered-XLMSAlgorithm
Theintroductionofthesecondary-pathtransferfunctionintoacontrollerusingthestandardLMSalgorithmshowninFig.3willgenerallycauseinstability[30].Thisisbecausetheerrorsignalisnotcorrectly“aligned”intimewith
KUOANDMORGAN:ACTIVENOISECONTROL
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
945
thereferencesignal,duetothepresenceof
toremoveitseffect.ThesecondsolutionistoplaceanidenticalfilterinthereferencesignalpathtotheweightupdateoftheLMSalgorithm,whichrealizestheso-calledfiltered-XLMS(FXLMS)algorithm[9].Sinceaninversedoesnotnecessarilyexistfor
Fig.4.BlockdiagramofANCsystemusingtheFXLMSalgo-rithm.
controlledbytheLMSalgorithmisshownin
Fig.3.Theresidualsignalisexpressedas
isthetimeindex,istheimpulseresponseof
denoteslinearconvolution,secondarypath
and
arethecoefficientandsignalvectors
isthefilterorder.Thefilterof
mustbeofsufficientordertoaccuratelymodeltheresponseofthephysicalsystem.
Assumingameansquarecostfunction
theadaptivefilterminimizestheinstantaneoussquarederror
(5)
usingthesteepestdescentalgorithm,whichupdatesthecoefficientvectorinthenegativegradientdirectionwithstepsize
(6)
isaninstantaneousestimateofthemean-where
square-error(MSE)gradientattime
,whereand
Fig.5.EquivalentdiagramofFig.4forslowadaptationand^(z)=S(z):S
whereistheestimatedimpulseresponseofthesecondary-pathfilter
bythefilter
ofphase
errorbetween
and
duringaninitialtraining
stageformostANCapplications.Thedetailedexperimentalsetupandprocedureforofflinesecondary-pathmodelingissummarizedin[4].Thetopicofadaptiveonlinesecondary-pathmodelingwillbediscussedlaterinSectionVI.
2)AnalysisoftheFXLMSAlgorithm:Considerthecase
ischangingslowly,soinwhichthecontrolfilter
andthattheorderof
through
issmall.
ThemaximumstepsizethatcanbeusedintheFXLMSalgorithmisapproximately[33]
isunknownand
mustbeestimatedbyanadditionalfilter
(9)
946
isthenumberofsamplescorresponding
PROCEEDINGSOFTHEIEEE,VOL.87,NO.6,JUNE1999
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
totheoveralldelayinthesecondarypath.Therefore,thedelayinthesecondarypathinfluencesthedynamicresponseoftheANCsystembyreducingthemaximumstepsizeintheFXLMSalgorithm.
Boucherandcoworkers[34],[35]discusstheeffectsofsecondarypathmodelingphaseerrorsontheoptimumstepsizeandconvergencetime.Theanalysisappliestothespecialcasewhenthereferencesignalisnarrow-bandbutthedisturbanceisstillbroadband.Numericresultssuggestthatphaseerrorsof40
[39]
(12)
where
(13)
where
becausethepolescomeclosertotheunitcircle.Fornarrow-bandsignals,errorsintheestimationofthesecondarypathtransferfunctioncanbeconsideredintwoparts:amplitudeerrorsandphaseerrors[36].Anymagnitudeestimationerrorwillproportionallychangethe
andhencewillsimplyscaletheidealpowerof
stabilityboundaccordingly.However,thereisnosimplerelationshipbetweenphasemodelingerrorandstabilityintherangeof
Anothercomplicationthatoftenarisesinthebroad-band
andarepresentcaseisthatmeasurementnoises
inthereferenceanderrorsignals,respectively.Theoptimalunconstrainedtransferfunction
thusrepresentsacompromise
betweenbiasingtheconvergenceweightvectorawayfromtheoptimumsolutionandmoderatingthecontroleffort.D.FeedbackEffectsandSolutions
TheacousticANCsystemshowninFig.1usesaref-erencemicrophonetopickupthereferencenoiseandprocessesthisinputwithanadaptivefiltertogeneratean
tocancelprimarynoiseacousticallyintheantisound
duct.Unfortunately,theantisoundoutputtotheloudspeakeralsoradiatesupstreamtothereferencemicrophone,result-inginacorruptedreferencesignal
isindependentofthe
associatedwiththeerrorsensor.measurementnoise
associatedwiththeHowever,themeasurementnoise
referencesensordoesaffecttheoptimumweightandhencereducesthecancellationperformance.Thebestfrequencyresponseofthecontrollerisacompromisebetweencan-andamplificationofcellationoftheprimarynoise
themeasurementnoisethroughthecontroller[25].Somepracticalconsiderationstoreduceundesiredmeasurementnoisearegivenin[4].
InFig.4,ifthesecondary-pathtransferfunction
noise,and
istheprimary
isthesignalpickedupbythereferencesensor,
and
isincloseagreementwithElliott’sapproximationgivenin(10).Therefore,effortsshouldbemadetokeepthedelaysmall,suchasdecreasingthedistancebetweentheerrorsensorandthesecondarysourceandreducingthedelayinelectricalcomponents.
3)LeakyFXLMSAlgorithm:InanANCsystem,thedi-rectapplicationoftheFXLMSalgorithmsometimesleadstoanotherproblem:highnoiselevelsassociatedwithlow-frequencyresonances,whichmaycausenonlineardistortionbyoverloadingthesecondarysource.Anobvioussolutiontothisproblemistheintroductionofoutputpowercon-straints.Similarresultscanbeobtainedbyconstrainingtheadaptivefilterweightsbymodifyingthecostfunctionas
KUOANDMORGAN:ACTIVENOISECONTROL
tothereferencesensor.The
steady-statetransferfunctionoftheadaptivefilteris[4]
hasconvergedtothenoiseless
optimalsolution(14),then
whiletheopen-loopgain
isgreaterthanunity.
947
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
Fig.6.BlockdiagramofANCsystemwithfeedback.
Fig.7.ANCwithacousticfeedbackneutralization.
1)FeedbackNeutralization:Thesimplestapproachtosolvingthefeedbackproblemistouseaseparatefeedbackcancellation,or“neutralization,”filterwithinthecontroller,whichisexactlythesametechniqueasusedinacousticechocancellation[43].Thiselectricalmodelofthefeedbackpathisdrivenbythesecondarysignal,anditsoutputissubtractedfromthereferencesensorsignal[44].Aduct-acousticANCsystemusingtheFXLMSalgorithmwithfeedbackneutralizationisillustratedinFig.7.Thefeedbackcomponentofthereferencemicrophonesignaliscanceledelectronicallyusingafeedbackneutralizationfilter
iscomputedas
vectorof
istheweight
isthereferencesignalvector,
istheweightvectorof
(17)(18)
where
canbeestimatedsimultaneouslybyusingthe
offlinemodelingtechnique[4].
2)AdaptiveIIRFilter:Equation(14)showsthatwhenfeedbackispresent,theoptimalsolutionoftheadaptivefilterisgenerallyanIIRfunctionwithpolesandzeros.ThisrationalfunctioncanbeapproximatedbyanFIRfunctionofsufficientorder,butasmallerstepsize
and
thanfor
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
Fig.9.Basicconfigurationofnarrow-bandANCsystem.
algorithmhaveneverbeenprovenformally.Amodifiedleakyversionofthesimplifiedhyperstableadaptivere-cursivefilter(SHARF)algorithm[52]hasbeendevelopedforANCapplicationstoimprovethestabilityoftheIIRadaptivefilter[53].Inthatalgorithm,alowpassfilterisusedtosmooththeerrorsignalforthefiltered-UrecursiveLMSalgorithm,therebyprovidingahigherstabilitymargin.III.NARROWBANDFEEDFORWARDANC
Manynoisesareperiodic,suchasthosegeneratedbyengines,compressors,motors,fans,andpropellers.Directobservationofthemechanicalmotionofsuchsourcesgenerallyispossiblebyusinganappropriatesensor,whichprovidesanelectricalreferencesignalthatcontainsthefundamentalfrequencyandalltheharmonicsoftheprimarynoise.However,thistechniqueisonlyeffectiveforperiodicnoisebecausethefundamentaldrivingfrequencyistheonlyreferenceinformationavailable.
A.Introduction
Abasicblockdiagramofnarrow-bandANCforreducingperiodicacousticnoiseinaductisillustratedinFig.9.Thissystemcontrolsharmonicsourcesbyadaptivelyfilteringa
internallygeneratedbysynthesizedreferencesignal
theANCsystem.Thistechniquehasthefollowingadvan-tages:1)undesiredacousticfeedbackfromthecancelingloudspeakerbacktothereferencemicrophoneisavoided;2)nonlinearitiesandagingproblemsassociatedwiththereferencemicrophoneareavoided;3)theperiodicityofthenoiseremovesthecausalityconstraint;4)theuseofaninternallygeneratedreferencesignalresultsintheabilitytocontroleachharmonicindependently;and5)itisonlynecessarytomodeltheacousticplanttransferfunctionoverfrequenciesinthevicinityoftheharmonictones;thus,anFIRfilterwithsubstantiallylowerordermaybeused.Thereferencesignalgeneratoristriggeredbyasyn-chronizationpulsefromanonacousticsensor,suchasatachometersignalfromanautomotiveengine.Ingeneral,twotypesofreferencesignalsarecommonlyusedinnarrow-bandANCsystems:1)animpulsetrainwithaperiodequaltotheinverseofthefundamentalfrequencyoftheperiodicnoise[54]and2)sinewavesthathavethesamefrequenciesasthecorrespondingharmonictonesto
KUOANDMORGAN:ACTIVENOISECONTROL
becanceled.Thefirsttechniqueiscalledthewaveformsynthesismethod,whichwasproposedbyChaplin[55].Thesecondtechniqueembodiestheadaptivenotchfilter,whichwasoriginallydevelopedforthecancellationoftonalinterference[56]andappliedtoperiodicANC[57].
ThewaveformsynthesismethoddiscussednextinSectionIII-Bemployssynchronoussampling.However,forsomeapplications,theactualperiodwillvaryfromthenominalvalueasafunctionofloadingconditions.Therefore,itissometimesdesirabletooperateasynchro-nouslywithafixedsamplingratesothatthesecondary-pathestimatefiltercoefficientsdonothavetobechangedasafunctionofactualmachinerotationrate.Also,somedigitalsignalprocessorscannotbeefficientlyutilizedonasynchronoussignal-drivenbasis.AsynchronousANCsystemsusingtheFXLMSalgorithmeliminatetheproblemofhavingtochangeasthesamplingratevariesandareimplicitinthelaterformulationsofSectionsIII-CandIII-D.
B.WaveformSynthesisMethod
1)StructuresandAlgorithms:Thewaveformsynthesizer[55]storescancelingnoisewaveformsamples
isthenumberofsamplesoveronecycleofthe
waveformand
(19)
representsthe
andcanbeimplementedasapointer
incrementedinacircularfashionbetweenzeroand
foreachsamplingperiod,controlledbyinterruptsgeneratedfromthesynchronizationsignal.
Theresidualnoisepickedupbytheerrormicrophoneissynchronouslysampledwiththereferencesignaltimingpulses.Inapracticalsystem,thereisadelaybetweenthetimethesignal
isthetimedelay,whichis
constantforagivenloudspeaker-microphonearrangement,mustbeupdated
asthesamplingratevaries,sinceitissynchronizedwiththenoisesource.
949
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
thcoefficientofthefilter
mod
Fig.10.Equivalentdiagramofwaveformsynthesismethodusingimpulsetraininputandneglectingsecondarypatheffects.
(24)
2)PrincipleandAnalysis:ThewaveformsynthesismethodisequivalenttoanadaptiveFIRfilteroforder
excitedbyaKroneckerimpulsetrainofperiod
where
]isspecified
by(22).Thepresenceof
isthediscreteKroneckerdeltafunctionand
input
betweentheprimaryisderivedas[54]
isthenumberofsamplesofdelayfrom
toissmallcomparedtothefilterlength
from
forthedelayedLMSalgorithmis[59]
planetocreate
nullsinthefrequencyresponseatharmonicfrequencies
andaccord-inglyincreasestheout-of-bandovershootofthefrequencyresponse[59],[60].Asthestepsize
fromstabilityconsiderations;thatis,
(Hz)[54].Thisshowsthatthebandwidthofthenotchfilterisproportionaltothestepsize
mustbecompensated
forbyusingtheFXLMSalgorithm.Assumingasecondary-oforderpathestimate
and
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
Fig.11.Single-frequencyadaptivenotchfilter.
and
referencesignal.A90
fromtheprimaryis[56]
.Thus(31)
where
arelocatedinthe
input
thorderadaptivefilter,(27)becomes[61]
(32)
whereand
and
arethefilteredversionsof
atfre-andisthephasedifferencequency
atForsmallhasbetween
complexconjugatepolesatradius
arepositive,theradiusof
thepolecanbegreaterthanoneonlyif
(34)
andtheconvergencetimeconstantissloweddownbyafactorof
s
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
theout-of-bandgainproblemistoequalizethesecondary-pathtransferfunction
3)Direct/ParallelForm:Aconfigurationofmultipleref-erencesignalgeneratorsandcorrespondingadaptivefiltershasbeendeveloped[66]toimprovetheperformanceofANCsystemsforautomotiveapplications.Theideaistoseparateacollectionofmanyharmonicallyrelatedsinu-soidsintomutuallyexclusivesetsthatindividuallyhavefrequenciesspacedoutasfaraspossible.Ingeneral,ifthereare
containsstaggeredsinusoidalfrequenciesof
everyother
and
cosinetableanda90
orusesonlyone
iseffectivelyincreased,ascompared
tothedirectimplementationtechnique.
4)CascadeForm:Ideally,multiple-sinusoidreferencesaremoreeffectivelyemployedinacascadeof
(37)
where
thsectionadaptivefilter.Each
sinusoids
(35)
where
thsinusoid.Whenthefrequencies
ofthereferencesinusoidsareclosetogether,alongfilter
producesanotchatIfanestimateofthe
secondary-pathtransferfunctionisavailable,itispossi-bletoconfigurea“pseudocascade”arrangement[60]thatideallyperformsasatruecascadebutrequiresonlyonesecondarypathestimate
potentiallycontainsthefundamentalandall
harmoniccomponentsoftheperiodicnoise.Theshape
isdependentontheduty-cycleofthespectrumof
whereratio
sinusoids,
adaptivefilteroutputs
isderivedasinthesingle-frequencycase.Sinceonlyoneerrorsensorisused,there
isonlyoneerrorsignal
adaptivefiltersbasedontheFXLMSalgorithm.
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
Fig.15.WidebandadaptivefeedbackANCsystemusingtheFXLMSalgorithm.
Fig.13.izer.
Blockdiagramofsingle-frequencyactivenoiseequal-
Fig.14,theprimarynoiseisexpressedinthe
isthesignal
obtainedfromtheerrorsensorand
andusethisasa
synthesizedreferencesignal
Fig.14.Single-channelfeedbackANCsystem.
andthebalancingbranch.Thegains
],thepseudo-errorcanbeexpressedas
,whichistheresidualnoiseofthe
conventionalANCsystem.TheadaptivefilterminimizesthepseudoerrorsignalusingtheFXLMSalgorithm.Afterthefilterhasconverged,
containsaresidualcomponentofthenarrow-bandnoisewhoseamplitudeiscontinuously,linearly,andtotallycontrolledbyadjustingthegainvalue
isfilteredbythe
andthencombinedwithsecondary-pathestimate
toregeneratetheprimarynoise.
Thecompletesingle-channeladaptivefeedbackANCsystemusingtheFXLMSalgorithmisillustratedinFig.15,
isalsorequiredtocompensateforthesecondarywhere
issynthesizedaspath.Thereferencesignal
arethecoefficientsoftheusedtoestimatethesecondary
path.
2)AlgorithmAnalysis:FromFig.15,wehaveifoftheLMSalgorithmissmall(slowconvergence),theadaptivefilter
canbecommutedwith
canbemodeledby
apuredelay,thatis,
to
predictionerrorfilter
anadaptivepredictoroftheprimarynoise
iscalledthe
actsas
of
feedbackANCfrom
is[4]
fortheANCfilter.In
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
Fig.17.HybridANCsystemwithcombinationoffeedbackANCandfeedforwardANC.
Fig.16.Blockdiagramofadaptivepredictor.
ANCsystemdiscussedinSectionII.Thestabilityrobust-nessoftheadaptivefeedbackcontrollertochangesintheplantresponsecanbeseparatelyassessedusingageneral-izationofthecomplementarysensitivityfunction[75].Thestabilityrobustnessisimprovedbyincorporatingvariousformsofeffortweightingintothecostfunction,resultingintheleakyFXLMSalgorithmusedinfeedforwardANCsystems.
3)OtherFeedbackANCAlgorithms:Theoutput-whiteningfeedbackANCmethod[76]assumesthattheprimarynoise
oftheprimarynoiseattheerrorsensorthantheoutputofthereferencesensor,whichislocatedawayfromthecontrolpoint.Thisisparticularlytruewheneverthenoisefieldisisotropicandthereferencesensorisnolongerfullycoherentwiththenoiseattheerrorsensorlocation.B.HybridANCSystems
ThefeedforwardANCsystemsdiscussedinSectionIIusetwosensors:areferencesensorandanerrorsensor.ThereferencesensormeasurestheprimarynoisetobecanceledwhiletheerrorsensormonitorstheperformanceoftheANCsystem.TheadaptivefeedbackANCsystemusesonlyanerrorsensorandcancelsonlythepredictablenoisecomponentsoftheprimarynoise.AcombinationofthefeedforwardandfeedbackcontrolstructuresiscalledahybridANCsystem,asillustratedinFig.17[80].ThereferencesensoriskeptclosetothenoisesourceandprovidesacoherentreferencesignalforthefeedforwardANCsystem.Theerrorsensorisplaceddownstreamandsensestheresidualnoise,whichisusedtosynthesizethereferencesignalfortheadaptivefeedbackANCfilter,aswellastoadaptthecoefficientsofboththefeedforwardandfeedbackANCfilters.ThefeedforwardANCattenuatesprimarynoisethatiscorrelatedwiththereferencesignal,whilethefeedbackANCcancelsthepredictablecompo-nentsoftheprimarynoisethatarenotobservedbythereferencesensor.
ThehybridANCsystemusingtheFIRfeedforwardANCandtheadaptivefeedbackANCisillustratedinFig.18,
isgeneratedusingthewherethesecondarysignal
outputsofboththefeedforwardANCfilterhastworeferenceinputs:and
thecoefficientsofthefilters
fromthereferencesensorand
areusedtoadapt
isminimumphase.
Then,fromlinearestimationtheory,theoptimalcontrollerisexpressedas
thatisspectrallywhite;inotherwords,allthe
energythatispredictablefromtheMAmodel
andpredictthenextvalueof
anddevelopaprocedureforestimatingits
parameters.ThepredictionpartisthenformulatedusingthestandardKalmanfiltersetup.
TheperformanceoftheKalmanalgorithmwascom-paredwiththefeedforwardANCalgorithmdiscussedinSectionIIbyZangi[79].Theoutputoftheerrorsensorcontainsmuchmoreinformationaboutthefuturevalues
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
Fig.18.HybridANCsystemusingtheFIRfeedforwardANCwiththeFXLMSalgorithm.
V.MULTIPLE-CHANNELANC
Sincethenoisefieldinanenclosureoralarge-dimensionductismorecomplicatedthaninanarrowduct,itisgenerallynecessarytouseamultiple-channelANCsystemwithseveralsecondarysources,errorsensors,andperhapsevenseveralreferencesensors.Someofthebest-knownapplicationsarethecontrolofexhaust“boom”noiseinautomobiles[81]–[84],earth-movingmachines[85],andthecontrolofpropeller-inducednoiseinflightcabininteri-ors[86]–[88].OtherANCapplications,suchasvibrationcontrolincomplexmechanicalstructures,alsorequiremultiplechannels.
A.Principles
Theoreticalpredictions,computersimulations,andlab-oratoryexperimentsonharmonicANCinashallowen-closurewerepresentedinatrilogyofpapersbyNelsonetal.[]–[91].Thetotalpotentialacousticenergy
isthedensityoftheacousticmedium,
therrorsensorpositionintheenclosurewithatotalof
referencesensorstoformthereferencesignal
vector.ForadaptivefeedbackANC,thereferencesignalsareinternallysynthesizedbasedonthesecondaryanderrorsignals.Themultiple-channelANCsystemgenerateserrorsensorsaredistributedoverdesired
locationstomeasuretheresidualnoisecomponents.
Ablockdiagramofamultiple-channelANCsystemthatincludesfeedbackpathsfromthesecondarysourcestothereferencesensorsisillustratedinFig.20.Thewidearrowsrepresentanarrayofsignals(acousticorelectrical)
KUOANDMORGAN:ACTIVENOISECONTROL
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
955
forandarethefilteredreferencesignalvectors,whichareformedbyfiltering
bythesecondary-pathestimatesfromthe
therrorsensor.In(46),
representstheimpulseresponseofanFIRfilterthatisusedtoestimate
2
Fig.20.Blockdiagramofanadaptivemultiple-channelfeedfor-wardANCsystemwithfeedbackpaths.
isusedtoreplace
thataresymbolicallyexpressedasvectors.Thematrixrepresents
secondary-pathtransfersecondarysourcesto
from
possiblefeedforwardchan-nels,eachdemandingaseparateadaptivefilter,andthese
adaptivefiltersarerepresentedbythematrix
with
tocontroltheinfluenceofthe
onlyif
2
functions,
thsecondarysignalisobtainedbyfilteringthe
throughthecorrespondingadaptivereferencesignal
FIRfilter
(43)
where
theweightvectorofthe
is
(47)
wherethesuperscript
playsthesamerole
asthereferencesignalautocorrelationmatrixinthesingle-channelcase.Theeigenvaluesof
isthecommonreference
signalvectorforalladaptivefilters.
Thecostfunctionoftheadaptivefiltersisapproximatedbythesumoftheinstantaneoussquarederrorsas
equa-tions[4]
(45)
where
(46)
956
Thus,theconvergenceofthe
generalbroad-bandmultiple-channelFXLMSalgorithmislimitedbyboththespatialandtemporalcharacteristicsofthesystem.
Aswiththesingle-channelleakyFXLMSalgorithm,thecostfunctioncanbemodifiedtoincludethecontroleffort,writtenas
(48)
PROCEEDINGSOFTHEIEEE,VOL.87,NO.6,JUNE1999
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
where
andmoderatingthe
controleffort
forand
(52)
(49)
where
theigenvalueof
Theeffectof
arethefilteredreferencesignalvectors.
Apracticalapplicationofmultiple-reference/multiple-outputactivecontrolforpropellerblade-passagenoiseinsidea50-seataircrafthasbeenreported[33].Thatsystemusesthreereferencesignals(internallygeneratedsinusoids)forthefundamentalfrequencyanditsfirsttwoharmonics,16secondarysources,and32errorsensors,resultingina3
32multiple-reference/multiple-outputANCsystem.C.Multiple-ChannelIIRAlgorithm
Thepurposeofthebroad-bandfeedforwardmultiple-reference/multiple-outputadaptiveIIRcontroller[41],[73],[96]istoprovidemultiple-channelANCcapabilitywithlongerimpulseresponsesandfeedbackcompensationusingalow-orderrecursivesection.AsillustratedinFig.21,thecontrollercontainstwofiltersections.Thefirstsectionisablockofall-zeroFIRfiltersfromeachreferencesensortoeachsecondarysource,whilethesecondsectionimplementsamatrix-IIRstructureofall-polefilters.Thefeedforwardsectionofthecontrollerisrepresentedbythetransferfunctionmatrix
frominputtothe
thcomponentoftheoutputvector
repre-sentstherecursivesectionofthecontrollerwithelement
from
,whichdrivesthe
willnotonlyspeedup
convergencebutcanalsopreventphysicallyunreasonablevaluesofcontroleffort.Thevalueof
secondarysourcesto
the
secondaryactuatorstothereferencesensorinthebroad-bandmultiple-channelANCsystemistousefeedbackneutralization.
(53)
D.Multiple-Reference/Multiple-OutputFXLMSAlgorithmThegeneralmultiple-reference/multiple-outputANCsys-temusingtheFXLMSalgorithmisshowninFig.20,where
hasthattheANCfilter
areelementsofthesignalvector
isthe
referenceinputindexand
thsecondarysourceis
(50)
where
arethereferencesignalvectors.Therearedifferentsecondarypathsbetweenthe
secondarysourcesanderrorsensors,whicharemodeled
togenerateanarrayoffilteredreferencesignalsby
forthemultiple-channelFXLMSalgorithm
(51)
wherewhere
and
arethefeed-forwardandfeedbackfiltercoefficients,respectively,and
are,respectively,thereferenceinputsignal
vectorsandoutputsignalvectors.
Amultiple-reference/multiple-outputfiltered-UrecursiveLMSalgorithm[41],[96]fortheIIRfilterstructuremini-mizesthesumofthe
(54)(55)
and
are,respectively,thefilteredreferenceandoutputsignalvectors.
Multiple-channeladaptiveIIRfilteringhasbeensuccess-fullyappliedtotheactivecontrolofrandomnoiseinasmallreverberantroom[41].Inthatwork,theperformanceofadaptivemultiple-channelFIRandIIRfilterswascompared
957
KUOANDMORGAN:ACTIVENOISECONTROL
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
Fig.21.Blockdiagramofmultiple-channelANCsystemusinganIIRadaptivefilter.
experimentallyforanANCsystemwithfoursecondarysourcesandeighterrorsensors.Thematrix-IIRstructureresultsinamorestableconfigurationinthepresenceoffeedback,especiallyifasmallleakagefactorisincluded.Theexperimentalresultsalsoshowthatfarbetterperfor-manceisachievedbyusingIIRfiltersratherthanFIRfilterswhentheprimarynoisesourcehasalightlydampeddynamicbehavior.
D.Multiple-ChannelAdaptiveFeedbackANCSystemsThesingle-channelfeedbackANCsystemshownin
systemthathasFig.15iseasilyextendedtoa
ofthefeedbackANCsystemissynthesizedas
anestimateoftheprimarynoise
(56)
istheimpulseresponsesoffilter,whichwhere
fromthemodelsthesecondarypath
arethesecondary
signalsobtainedfromtheadaptivefilters
byadjustingtheweightvectorforeachadaptive
filter
(57)
where
(58)
isthereferencesignalvectorfilteredbythesecondary-pathestimate
adaptivefeedbackANCsystem
isillustratedinFig.22.Inthissystem,therearesecondarypathsfromthe
therrorsensor,whichareestimatedbythecorre-spondingfilters
secondarysignalserrorsignalssecondary-pathestimatestogenerate
(59)
istheimpulseresponseofthesecondary-where
pathestimate
Fig.22.
BlockdiagramofK2MfeedbackANCsystem.
forthecorresponding
adaptivefilters,
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
Fig.23.Blockdiagramofonlinesecondary-pathmodelingtech-niqueproposedin[9].
Fig.24.BlockdiagramofANCsystemwithonlinesec-ondary-pathmodelingusingadditiverandomnoise.
A.FundamentalProblem
AnANCsystemusingtheFXLMSalgorithmwithadap-tiveonlinesecondary-pathmodeling[9]isillustratedin
generatesasecondaryFig.23.Theadaptivefilter
thatpassesthroughthesecondarypathnoise
forthetobeunobtrusive,itshouldobserveonly
thesignalsalreadyinthesystem.Consequently,inapracticalANCsystem,atradeoffbetweenindependenceandintrusionhastoberesolved.
B.AdditiveRandomNoiseTechnique
1)BasicTechniqueandConvergenceAnalysis:Anonlinesecondarypathmodelingtechniqueusingadditiverandomnoise[99]isillustratedinFig.24.Azero-meanwhitenoise
isinternallygeneratedandisaddedtothesecondary
todrivethesecondarysource.Theadaptivesignal
isconnectedinparallelwiththesecondarypathfilter
only.
Itisusefultodefinethecomponentoftheerrorduetotheoriginalnoiseas
(61)
where
aretheimpulseresponsesofattimeisuncorrelatedisalsouncorrelatedwith
alsoservesasanexcitationsignalfor
secondary-pathmodeling.Thecoefficientsoftheadaptive
areadjustedonlinetomodelcontinuouslythefilter
secondarypath
isapersistentexcitationsignal,andthat
time-invariantsystems,thesteady-statesolutionof[4]
areis
onlyif[orequivalently,].
isaffectedbytheEquation(60)alsoshowsthat
adaptivefilter
is
and
isvery
with
complicated.Forexample,bysubstituting
,whichisanundesiredsolutionand
shouldbeavoided.
Therearetwoimportantrequirementsofsecondary-pathmodeling.Thefirstisthatanaccurateestimateof
willhaveaneffecton
theconvergenceoftheadaptivealgorithm.
AsillustratedinFig.24,thecoefficientsoftheadaptive
areupdatedbytheLMSalgorithm,whichisfilter
expressedas[4]
(62)
isthecoefficientvectorofandiswhere
inthereferencesignalvector.Theexpectedvalueof
(62)convergestoitsoptimalsolutionandareuncorrelated.However,thisdoesnotmean
willbeequaltothatinstantaneousvaluesof
in(62)is
adisturbancethatisfrustratingconvergenceoftheLMSalgorithmandwillthereforedegradetheperformanceoftheadaptivefilter
directly.However,
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
Foronlinemodeling,actslikeanuncorrelatedplant
Afterconvergence,thisresidualnoisenoiseofpower
willperturbtheadaptiveweightsofdueto
and
impulseresponsesofthefiltersforsufficientlysmallstepsize
arethe
and
and(62)willconverge
isthe
andorderoftheadaptivefilter
[4].Asanexample,supposethat
(anonlinenormalizedmodelingerror
[4].Therefore,itwouldtake100times
toconvergeonlineasitwouldtoconvergeaslongfor
offline.InmostANCapplications,theinterferenceismuchlargerthantheexcitationsignalandthe
isthereforeveryslow,oritconvergencerateoffilter
mayfailtoconvergebecauseoffinite-wordlengtheffects.2)MethodsforImprovement:Toimprovetheconver-inthepresenceoftheinterferencegenceof
thatiscorrelatedwiththe
[100],[101].Anadditionaladaptiveprimarysource
asthereferencesignalisusedtocancelthefilterwith
inerrorsignalpickedupbyundesiredcomponent
theerrorsensor.Theconvergencerateofthemodelingfilter
hasbeenshowntoimprovebyafactorof
and
isusedduringtheinitializationstageor
aredetected,atifsignificantchangesin
andareupdated.Otherwisethewhichtimesonly
systemupdates
astheexcitationsignal.Thecostsonlyonedelayunitbecauseimplementationof
delayunitsarealreadyincludedin
haveconverged,wehave[4]
inerrorsignal
[102].Theoptimumdelayfortheadaptivepredictorisequaltothelengthoftheimpulseresponseofthesecondarypathbeingmodeled.
C.OverallModelingAlgorithm
Anoverallonlinesecondary-pathmodelingalgorithm[49],[103]–[105]triestoeliminatethebiasingterm
in(60)byintroducinganotheradaptivefiltertomodel
thatistheoutputsignalof
providessufficientexcitationatall
frequencies.Therefore,thecorrespondingand
andthe
lengthoftheimpulseresponseof
arelarge.Adaptivefilters
and
areabletotrack
inboth
areabletotrack“slow”changesonlinewhenisused[107].
D.Multiple-ChannelModelingAlgorithms
1)InterchannelCouplingEffect:Onlinemodelingof
secondarypathsismoredifficultthanfora
fromsingle-channelcase,sincetheerrorsignal
the
andsecondarypathsfor
2
todecorrelatetheprimaryand
andwillconvergesecondarysignalssothat
to
960
andare
generatedbyadaptivefiltersandarecombinedwithadditive
todrivethesecondarysources.Theerrorrandomnoise
PROCEEDINGSOFTHEIEEE,VOL.87,NO.6,JUNE1999
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
Fig.26.Secondary-pathmodelingfora12222ANCsystemusingonerandomnoisegenerator.
signalismeasuredbythefirsterrorsensor,whichis
canceledbytheresidualerroroftheprimarynoise
thenoisesfrombothsecondarysources.Adaptivefilters
andareusedtomodelthesecondarypathsand
iszeromeanand
isuncorrelatedwith
willconvergeto[4]
andinthiscase],the
isbiasedbythecross-coupledsecondaryestimate
andispaths
adaptedatthesametimeas
secondary
pathsfromoneofthesecondarysourcestothesecondarysourcescouplestoeacherrorsensor.Thisprocessisrepeated
secondarypathtransfer
functions.Ashortcomingofthissolutionisthetotaltimerequiredtomodelallthesecondarypaths(bothofflineandonline),whichmaybetoolongforsomeANCapplications.Analternativesolutionistouse,forexample,tworandom
2system.Therandomnoisegenerators[4]fora1
andaremutuallyuncorrelatedandalsonoises
uncorrelatedwithothersignals.Thistechniquecanbegeneralizedtosolvetheinterchannelcouplingproblemof
ANCsystemusinga
secondarypathsusingasinglerandomnoisegenerator.
TheoverallmodelingalgorithmdiscussedinSectionVI-Ccanalsobeextendedtomultiple-channelANCsystemswith
isthenumberofsecondarysources.
Foreacherrorsignal,
areusedtomodelthecorrespondingsecondaryandcombinedwithanadaptivefilterpaths
tocancelthehighlycorrelateddisturbancefromtheprimarynoisesource.Thismultiple-channelANCal-gorithmwasappliedtocontrolstructuralvibration[109].3)AudioInterferenceCancellation:AnintegratedANC-audiosystemenhancesadesiredaudiosignalbyutilizingANCtoreduceunwantedacousticnoise.Thisintegratedsystemusessharedanalogcomponentssuchasmixers,amplifiers,andloudspeakerssothatmultiple-channelANCmaybeappliedinavarietyofapplications,suchasau-tomobiles,withouttheexpenseofsystemredundancies.Inthisintegratedsystem,theaudiosignalpickedupbytheerrorsensorsinanenclosurebecomesaninterferencetotheANCsystem.TheaudiointerferencetotheANCfiltercanbereducedusinganadaptivenoisecancelerwiththedesiredaudiosignalasthereferencesignal[110].As-sumingthattheaudiosignalisofpersistentexcitationanduncorrelatedwiththeprimarynoise,theadaptivefilterusedfortheaudiointerferencecancellationwillconvergetothesecondarypath,andthusalsoperformsonlinesecondary-pathmodeling.Inaddition,musicwouldbemoreenjoyablethanrandomnoise,bothintheinitialtrainingstageandforonlineoperation.Thisintegratedsystemisexpandedtoincorporatehands-freecellularphoneoperation[111].Interferencecancellationandonlinemodelingareinher-entlymoredifficultforthemultiple-channelcase.First,theleftandrightaudiosignalsmaybepartiallycorrelatedandthatwouldcauseproblemsinuniquelyidentifyingthecross-coupledsecondarypaths.Furthermore,theinterchanneldecouplingdelaytechniquecannotbeusedherebecausethatwoulddestroythestereoeffectofthedesiredsignals.Consequently,offlinetechniquesorsomecombinationofonlineandofflinetechniqueswouldhavetobeemployedformultiple-channelsystems.
VII.OTHERANCSTRUCTURESANDALGORITHMS
TheadaptivetransversalfilterusingtheFXLMSalgo-rithmisthemostwidelyusedtechniqueforANCsys-tems,owingtoitssimplicityandrobustness.However,theLMSalgorithmhasthedisadvantageofrelativelyslowandsignal-dependentconvergence.ThismaybeonlyaminorproblemforANCsystemswithstationarynoisesourcessuchastransformers,electricpowergenerators,diesel-poweredboats,locomotives,andcompressors.Fornonstationarynoisesourcessuchasautomobiles,slowconvergenceisacriticalproblemwhenattemptingtocanceltransientnoise,whichoccursatvehiclestartups,stops,orgearshifts,orwithsuddenchangesofenginespeedsorroadnoisefromtires.
961
KUOANDMORGAN:ACTIVENOISECONTROL
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
Fig.27.Overallstructureoflatticepredictorandmultipleregressionfilter.
Anadaptivesysteminvolvestwobasicparts:afilteringoperationthatproducesanoutputsignalandanadaptationalgorithmthatadjuststhecoefficientsofthefilter.Ifatransversalfilterisused,theconvergenceratecanbeimprovedbyusingmoreadvancedalgorithmssuchasadjustable-step-sizeLMSalgorithmsandrecursive-least-squares(RLS)algorithm.Theotherapproachistoconditionthereferencesignalbyemployingdifferentfilterstructuressuchasthelatticefilter,subbandfilter,ororthogonaltransform.
ThesimplestapproachforimprovingtheconvergenceoftheLMSalgorithmistouseadaptivestepsizes[112]–[115].Theselectionofstepsizecanbebasedonthemagnitudeoftheerrorsignal,polarityofsuccessivesamplesoftheerrorsignal,measurementofthecorrelationoftheerrorsignalwiththereferencesignal,andotherfeatures.Theperformanceofthesetechniquesishighlydependentontheselectionofcertainparametersinthealgorithms,andtheoptimalchoiceishighlysignaldependent.Avariable-step-sizeLMSalgorithmwasusedtoimproveconvergenceforanair-conditioningductANCapplication[116],[117].A.LatticeANC
1)LatticeStructuresandAlgorithms:Theadaptivelat-ticepredictorisamodularstructurethatconsistsofanumberofcascadedstageswithtwoinputandtwooutputchannels.Thelatticestructureenjoystheadvantagesofasimpletestforfilterstability,goodperformanceinfinite-wordlengthhardwareimplementations,andgreatlyreducedsensitivitytotheeigenvaluespreadofthereferencesignal[15].Therecursiveequationsthatdescribethelatticestructureareexpressedas[4]
ofadaptivefilterare
updatedbythegradientlatticealgorithmtominimizethemeansquareofthesumofforwardandbackwardpredictionerrorsateachstage[118],[119]
(68)
thstage.Thesteady-statewhere
reflectioncoefficientsofthelatticepredictorhaveamag-nitudelessthanone[15].Thispropertyisveryimportantandconvenientforafixed-pointhardwareimplementation.Anotherimportantpropertyofthelatticestructureisthatthe
aremutuallyuncorrelatedbackwardpredictionerrors
[15].Thus,thelatticepredictortransformsthecorrelatedreferencesignals
(69)
where
(66)(67)
istheforwardpredictionerror,isthewhere
isthereflectioncoeffi-backwardpredictionerror,
isthestage(order)index,andcient,
isthetotalnumberofcascadedstages.Thereference
isusedastheinputsignalforstageone,assignal
showninFig.27andexpressedby
962
followingtheadaptiveregres-sionfilterresultsintheFXLMSalgorithm,expressedas[4]
(72)
PROCEEDINGSOFTHEIEEE,VOL.87,NO.6,JUNE1999
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
Fig.28.ANCsystemusingalatticefilterandtheFXLMSalgorithm.
whereisthefilteredbackwardpredictionerrorvectorwithelements
isalsofilteredby
toyield-pointdatabuffer.Thisfilteredreferencesignalvectoristhentransformedinto
usingtheFFT.Theresidualthefrequencydomain
measuredbytheerrorsensorisalsostoredinanerror
forex-pressedin(73)requiresintensivecomputationandstorage
isfilteredbythesinceeach
secondary-pathestimate
hasbeensplitinto
for
eachfrequencybinthatisinverselyproportionaltothesignalpoweratthatbin.Thisresultsinthenormalizedfrequency-domainFXLMSalgorithmexpressedas
(74)
andthereflectioncoefficients
arecopiedfromtheadaptivelatticepredictorshowninFig.28.Thisslavedlatticefilterthengenerates
where
isthecomplexconjugateof
(75)
isthenormalizedstepsizeatfrequencybin
(76)
isalowpass-filteredestimateofthepowerof
samples.
Insteadoffilteringthesignalsamplebysample,thefrequency-domainFXLMSalgorithmprocessesthesignalblockbyblock.Thus,thereare
isfirstfilteredby
-pointdatabufferandthentransformedtothefrequency-domainsignals
toproducethefrequency-domain
outputsignals
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
Fig.30.DelaylesssubbandANCsystem.
hasbeenrecentlyadvancedforthatapplicationinvolvestheuseofsubbands[129],[130].Processingthesignalsinsubbandshasatwofoldadvantage:1)thecomputationalburdenisreducedbyapproximatelythenumberofsub-bands,sinceboththenumberoftapsandweightupdateratecanbedecimatedineachsubbandand2)fasterconvergenceispossiblebecausethespectraldynamicrangeisgreatlyreducedineachsubband.Unfortunately,thebandpassfiltersusedinsubbandprocessingwillintroduceasubstantialdelayinthesecondarypath.
Amodificationofthesubbandtechniqueeliminatesdelayinthesecondarypath[131],[132].Thebasicideaisthattheadaptiveweightsarecomputedinsubbandsbutarethencollectivelytransformedintoanequivalentsetofwidebandfiltercoefficients.Fig.30showsthebasicconfigurationofthedelaylesssubbandANCtechnique.Thedisturbanceandreferenceareassumedtobederivedfromacommonnoisesourcethroughthelineartransferfunctions
is
developedasatransformationoffiltered-Xderivedsubbandweights,therebyeliminatinganydelayassociatedwiththecancellationsignal.
Thefilteredreferencesignalanderrorsignal
aredecomposedintosetsofsubbandsignalsusingthebandpassfilters
(possiblyafterap-propriatebandshifting)andthesubbandadaptiveweightsarecomputedbythecomplexLMSalgorithm.Theadap-tiveweightsineachsubbandarethentransformedintothefrequencydomain,appropriatelystacked,andinverse-transformedtoobtainthewidebandfiltercoefficients.OnewaytoimplementthedelaylesssubbandadaptivefilteristoemploythepolyphaseFFTtechnique[123].Ageneralformulationofthecomputationalrequirementsintermsoftheadaptivefilterlength,numberofsubbands,andpolyphasefilterlengthcanbefoundelsewhere[132].D.RLSAlgorithmforANC
TheRLSalgorithmcanbeusedwithanadaptivetransversalfiltertoprovidefasterconvergenceandsmallersteady-stateerrorthantheLMSalgorithm.The“fasttransversalfilter”[133]isanefficientversionoftheRLSalgorithm,whichreducestherequiredoperationstoapproximately
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
RLSalgorithmsandthefasttransversalfilter[15].WenowshowhowtheRLSalgorithmcanbemodifiedforANCapplications,whichincorporatesasecondarypathfollowingthetransversalfilter.ThismethodcanalsobeappliedtomodifythefasttransversalfilterforANCapplications.Theleast-squaresmethodassumesacostfunctionattime
fromthepreviousinsteadofesti-andtheninvertingittoobtainmating
(77)
(79)(80)
where
thefilteredreferencesignalvectorwithelements
is
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
Fig.32.SchematicdiagramofacousticANCexperimentinareverberantroom(adaptedfrom[132]).
Fig.33.[141]).
Blockdiagramofelectronicmuffler(adaptedfrom
obtainstheerrorsignalwhichistobeminimized.The
isderivedfromanothermicrophonereferencesignal
ontheright,whichisincloseproximitytotheprimarydisturbance.
TheapplicationofANCtothecancellationofbroad-bandacousticnoiseinareverberantroomrequiresalargenumberoftaps.Inordertominimizethecomputationalrateandtoenabletherealizationofthistechniqueusingasinglelow-costDSPchip,thesubbandtechniqueshowninFig.30canbeused.Applicationofthistechniqueusinga512-tapwidebandfilterhasachievedmorethan15dBofcancellationoverabandof100–500Hz[132].
B.Single-ChannelNarrow-BandFeedforwardSystems1)EngineExhaustNoise:Thecharacteristicsofengine-generatednoisecanvaryrapidlywithabruptchangesinengineloading,suchaswhentheengineisquicklyacceleratedordecelerated.Inaddition,engine-generatednoiseisdominatedbyharmonicallyrelatedcomponentshavingfrequenciesthatvaryasafunctionoftheenginerotationalspeed.Thedominantharmoniccomponentswilldependonthenumberofcylinders,duetothedifferingfiringpatterns.
Anexampleofelectronicmufflerperformance[140]wasobtainedfora450-horsepower,six-cylinder,two-cycledieselengineusedtopoweranauxiliaryelectricalpowergenerator.Themultiple-frequencyparallelFXLMSalgo-rithmofSectionIII-D2wasusedforthisapplication.Theelectronicmufflereliminatesthebackpressureassociatedwithaconventionalpassivemuffler,evenwhilereducingthenoiselevel.TheANCsystemisnormallylimitedtolow-frequencyoperation;however,itcanbecombinedwithalow-pressure-droppassivesilencertoattenuatetheresidualnoiseathigherfrequencies.Thus,thecombinationisabletoachievebothaimsoflowpressuredropandlownoise,simultaneously.
Theblockdiagramoftheelectronicmufflerdevelopedin[141]isshowninFig.33.Two4.5-inlow-frequency,high-temperatureloudspeakersareused.Thecancelingnoiseisportedaroundthepipeinacoaxialarrangement,andcancellationtakesplaceintheopenairattheendofthepipe.Theerrormicrophonewasmountedontherearofthe
966
Fig.34.Activeheadsetforcancelingnarrow-bandperiodicnoise(adaptedfrom[142]).
vehicle,10infromtheendpipe.ThesystemconsistsofthreemajorsubsystemsdiscussedinSectionIII-C.Thefirstisthewaveformgenerator,whichconvertsthepulsetrainfromtheenginetachometerintoasetofsinewaveshavingfrequenciesthataremultiplesoftheenginerotationrate.Inthenextsubsystem,thesesinewavesareadaptivelyfiltered(toadjustamplitudeandphase)andthenmixedtodrivethecancelingloudspeaker.Thethirdsubsystemmonitorstheresidualnoiseatthecontrollocationandadaptsthefiltercoefficients.
2)ANCHeadsets:Thepurposeofhearingprotectorsistoprotecttheearfromharmfulnoise.TheapplicationoffeedforwardANCusingthewaveformsynthesismethodhasbeendeveloped[142]tocancelrepetitivebackgroundnoiseattheearsofapersonwhileretainingtheabilitytohearotherambientsounds,asillustratedinFig.34.Thesynchronizationsignalscanbeobtainedbyeitheroptical,ultrasonic,orelectricalmeans(e.g.,wireorradio).ThesynchronizationsystemcanbecommontoanumberofANCheadsets,suchasinthecaseofavehiclecarryingmultiplepassengers.Becausethecancellationonlyaffectsnoisesynchronizedtothesourceoftherepetitiveback-groundnoise,mostofthelow-frequencysoundthatisnotsynchronizedremainsunaffected.
3)FanNoise:Asingle-channelnarrow-bandANCsys-temcanbeusedtocancelnoiseradiatedfromsmallaxialflowfans.Onesuchapplicationappearsin[143],whichusesaninfrareddetectorplacedoverthefantoderivebladepassagerate.Experimentsshowedthattheradiationofbladepassagetonescouldbeattenuatedby12dBusingthismethod.ThedevelopmentofanANCsystemforductedfansusingthewaveformsynthesismethodhasalsobeenreported[144],[145].
PROCEEDINGSOFTHEIEEE,VOL.87,NO.6,JUNE1999
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
C.Multiple-ChannelFeedforwardSystems
Multiple-channelfeedforwardANCapplicationshavebeendemonstratedforvibrationANConmechanicalstruc-tures,acousticANCinenclosuressuchasautomobileandaircraftcabins,free-fieldtransformernoise,andacousticANCinlarge-dimensionalductswithhigh-ordermodes.1)VehicleEnclosures:Mostmidsizefour-cylindervehi-clessufferfromenginenoise,particularlythelowfrequency“boom”attheenginefiringfrequency,whichisthedomi-nantsourceofinternalnoiseathigherenginespeeds[82].Withrespecttotheinteriorspaceofautomobiles,threeaspectscanbeconsideredbeneficialforthesuccessofANC:1)theperiodicityofengine-relatednoise;2)therelativelysmallvolumeofthecabin,whichleadstoasmalloverlapoftheresonantmodesinthelowerfrequencyrange;and3)thefactthatANCisonlyrequiredinthespacewheretheheadsofthedriverandpassengeraretypicallylocated.Therefore,alow-costsolutionistoprovideaquietzoneinsidethecabinaroundthedriver’sandpassengers’headposition.
Engine-relatednarrow-bandnoisecomponentscanbecanceledeitherbythewaveformsynthesismethodorbytheadaptivenotchfiltertechnique.Theenginespeedismeasuredbyanelectricalsensor,providingapulsesequencefromwhichareferencesignalissynthesized.Thecancelingsignalisgeneratedbyanadaptivefilterthatfeedssecondaryloudspeakersservingascontrolsources.Afastalgorithmtoadapttheadaptivefiltercoefficientsisessentialtoprovideacancelingsignalthattracksunderrapidlychangingrideconditions.Therefore,anANCsysteminacabinwillcontinuetofunctionevenwhenwindowsorhatchesareopened,andthereforeenablesexternalwarningsoundstobeheard.
ElliottandcoworkersdevelopedanANCsystemforthereductionofenginenoiseinacar[33],[81].Inthissystem,areferencesignalwasobtainedfromtheignitioncircuitandsixloudspeakersinthecarwereused.Theseloudspeakersandtheirassociatedpoweramplifierscanbesharedwiththein-carentertainmentsystem.UptoeighterrormicrophoneswereusedtomonitortheperformanceoftheANCsystem.Areductionof10–15dBattheenginefiringfrequencywasachievedbythisANCsystem.
Activecontroloflow-frequencyroadnoisepresentsagreaterchallengethancontrollingenginenoise.Inthatapplication,multiplebroad-bandprimarynoisesrequirehigher-orderadaptivefilters,thusconsiderablyincreasingtheconvergencetimeandcomputationalburden.Inoneapplication[146],sixaccelerometerswereplacedclosetothefrontwheels.Twosecondaryloudspeakerswereplacedinthedoorsadjacenttothedriverandfrontpassenger,andtwoerrormicrophonewereplacedonthefrontheadrestsattheouterearpositions.Themultiple-channelFXLMSalgorithmdiscussedinSectionV-Bwasusedforthisapplication.Abroad-bandreductionofabout7dB(A-weighted)inthesoundpressurelevelwasmeasuredwhendrivingonatypicalroadsurface.Inthisapplication,theimportantdesignissuesaretheplacementofreference
KUOANDMORGAN:ACTIVENOISECONTROL
sensorsformaximumcoherencewithrespecttotheinteriornoisetobecanceledandthetimedelayofthereferencesignals.
VibrationalANCinautomobilesisasimpleextensionofacousticANC[82].Accelerometersandactuatorsarelocatedonthechassissideofactiveenginemounts.Thepotentialbenefitsofactiveenginemountsareverydramatic,notonlyreducingacousticnoiseandmechanicalvibrationwithinthecabinbutalsoimprovingthecontrolandridequalitiesofthevehicle.
2)AircraftCabins:Theinteriornoiseofpropeller-drivenaircraftwasfoundtobedominatedbytonesatthefunda-mentalandharmonicfrequenciesofthepropeller.Feed-forwardANCsystemswith16loudspeakersand32mi-crophoneshavebeendevelopedfornoisecontrolinthepassengercabinofapropelleraircraft[88].The32mi-crophonesarelocatedatseatedheadheightthroughoutthepassengercabin.Analternativetechniqueforcontrollingaircraftinteriornoiseistouselightweightvibrationalsecondarysourcesonthefuselage[147],[148].
3)Free-FieldRadiation:Inmanysituations,undesirednoiseisradiatedintothefarfield.Ifthenoisesourceisfixedandwelldefined,itispossibletosuppresstheradiationscatteredbytheprimarynoisesourcebysurroundingthenoisesourcewithalayerofsecondarysources.Thisconceptisknownasanactivenoisebarrier.TheANCtechniquecanbecombinedwithapassivebarrierinordertoimprovethenoiseattenuationatlowfrequencies.Thelocationandseparationoftheerrorsensorsandsecondarysourcescanbeoptimizedtogetlargenoiseattenuationoverawide
4area.Aconfigurationoftwoindependent1
systemswastestedin[149]usingthenarrow-bandmultiple-channelFXLMSalgorithm.Acancellationof6–30dBwasdemonstratedoverawidearea.Toobtaingreaterspatialcoverage,itisnecessarytodeployasystemwithmorechannels.Potentialapplicationsofthistechniquearereduc-ingenvironmentalnoiseinlocalareas,suchasquietingthepositionofamachineoperatorinanoisyfactory,providinganoisescreenforabedatanairporthotel,creatinganoisebarrieratairports,highways,andsoon.
4)TransformerNoise:ANCalsooffersanalternativetolargepassivebarriersforattenuatingtransformernoise[150].Thisnoiseiscomposedofeven-numberedharmonicsofthe60-Hzpowerfrequency.Experimentsusingfoursecondaryloudspeakersandsixerrormicrophoneswiththe
6narrow-bandFXLMSalgorithmhaveshown1
thatsparsearraysofcancelersareeffectiveinprovidingattenuationoversignificantanglesofazimuth.Cancellationvaluesof15–20dBwereobtainedover35–40
ofazimuthat240Hz
[150].Asimilarsystemcomposedofthreecontrollers,threemicrophones,andthreeloudspeakershasbeendeveloped[151],andmorethan10-dBsoundpressurelevelreductionwasachieved.
5)IntegrationwithAudioandCommunicationSystems:AsANCcontinuestoprogress,theneedforsuccessfulin-tegrationwithexistingsystemsbecomesapparent.Thisexpectationofaunifieddigitalsolutionisexemplified
967
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
2
Fig.35.Experimentalstructurefortwo-channelvibrationANCexperiment(from[152]).
inmodernautomotiveelectronics.AunifiedapproachtocombineANC,in-carentertainment,andcommunication(cellularphone)systemshasbeenproposed[111]usinganadaptivenoisecancelertoattenuatenoisepickedupbythemicrophonebeforetransmission,anacousticechocancelertoreduceacousticechofromtheloudspeakertothemicrophoneforhands-freefull-duplexcellularphones,andamultiple-channelANCsystemtoreducetheacousticnoiseinsideanautomobilepassengercompartment.
Ithasbeenfoundthatthestandardin-carentertainmentloudspeakerpositionsareoftenquiteacceptableforANCapplications,whiletheerrormicrophonescanbedistributedatpositionsdeterminedbyacousticmodeanalysisofthevehicle[82].Productionvehicleswillutilizethesameloudspeakersasusedbythein-carentertainmentsystem,sharingthesamepoweramplifier.Thein-carentertainmentsystemismovingtoacompletelydigitalsystem,inwhichcaseANCmayultimatelybecomeasoftwareadditiontothedigitalaudiosystem.
6)ModalANCforaVibratingBeam:ThemodalANCconceptintroducedinSectionVII-Bisexemplifiedbythecontrolofavibratingcantileverbeam[138].Themodeswerecalculated,anddrivingfrequencies
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
Fig.36.Experimentalsetupfor12222multiple-channelbroad-bandfeedforwardANCsystem(adaptedfrom[154]).
wasimplementedonaTexasInstrumentsTMS320C30-basedsystem.Themicrophonethatsensestheresidualerrorsignalwasplacedontheaxisofthepipeatvariouslocationsfromthepipeexit.Theconvergenceofthesystemdependsonadjustmentofthemicrophonepreamplifiergainbecausethemicrophonesignalisusedtosynthesizethereferencesignal.TheadaptivefeedbackANCsystemwastestedusingrealnoiserecordedfromarunningtractorengineandabout30dBofreductionoftheharmoniccomponentsisachieved[156].
2)Multiple-ChannelSystems:Themultiple-channelfeed-backANCalgorithmwastestedforasystemwithtwosecondaryloudspeakersandoneerrormicrophone,the2
theaverage,about20dBattenuationwasobtainedformostofthesignificantharmonicspresentintheprimarynoise.Theexperimentalsetupforthe2
1caseexceptthattwoerrormicrophones
areused.Thesecondaryloudspeakerswereagainmountedontheroofofthecabinandthetwoerrormicrophoneswereplacedbelowandfacingthetwoloudspeakers.Theperformanceofthe2
1system.IX.CONCLUSIONS
ANCcancelstheunwantednoisebygeneratingantinoiseofequalamplitudeandoppositephasethroughthesec-ondarysources.ThispaperhasemphasizedthepracticalaspectsofANCsystemsintermsofadaptivealgorithmsandDSPimplementationsforreal-worldapplications.ThemostwidelyusedANCsystemwiththeadaptivetransversalfilterandtheFXLMSalgorithmwasfirstdevelopedandanalyzedbasedonsingle-channelcasesforbroad-bandfeedforward,narrow-bandfeedforward,andadaptivefeedbackcontrol.Thesesingle-channelANCalgorithmswerethenexpandedtomultiple-channelcasesforcontrollingthenoisefieldinanenclosureoralarge-dimensionduct.Variousadaptivealgorithmssuchasthelattice,frequency-domain,subband,andRLSalgorithmswerealsomodifiedforANCappli-cations.Thefundamentalproblemsandseveralsolutions
969
1adaptivefeedbackANC
systemwastestedusingrecordedtractorenginenoise.On
KUOANDMORGAN:ACTIVENOISECONTROL
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
toonlinesecondary-pathmodelingwerediscussedforpro-vidingsomedirectionsonnewalgorithmdevelopments.Applicationexamplesdemonstratedtheconnectiontoreal-worldproblems.REFERENCES
[1]C.M.Harris,HandbookofAcousticalMeasurementsandNoise
Control,3rded.NewYork:McGraw-Hill,1991.
[2]L.L.BeranekandI.L.Ver,NoiseandVibrationControl
Engineering:PrinciplesandApplications.NewYork:Wiley,1992.
[3]P.A.NelsonandS.J.Elliott,ActiveControlofSound.San
Diego,CA:Academic,1992.
[4]S.M.KuoandD.R.Morgan,ActiveNoiseControlSys-tems—AlgorithmsandDSPImplementations.NewYork:Wi-ley,1996.
[5]C.R.Fuller,S.J.Elliott,andP.A.Nelson,ActiveControlof
Vibration.SanDiego,CA:Academic,1996.
[6]C.H.HansenandS.D.Snyder,ActiveControlofNoiseand
Vibration.London,U.K.:E&FNSpon,1997.
[7]P.Lueg,“Processofsilencingsoundoscillations,”U.S.Patent
2043416,June9,1936.
[8]G.C.GoodwinandK.S.Sin,AdaptiveFilteringPredictionand
Control.EnglewoodCliffs,NJ:Prentice-Hall,1984.
[9]B.WidrowandS.D.Stearns,AdaptiveSignalProcessing.
EnglewoodCliffs,NJ:Prentice-Hall,1985.
[10]C.F.N.CowanandP.M.Grant,AdaptiveFilters.Englewood
Cliffs,NJ:Prentice-Hall,1985.
[11]M.L.HonigandD.G.Messerschmitt,AdaptiveFilters:Struc-tures,Algorithms,andApplications.Boston,MA:Kluwer,1986.
[12]S.T.Alexander,AdaptiveSignalProcessing.NewYork:
Springer-Verlag,1986.
[13]J.R.Treichler,C.R.Johnson,Jr.,andM.G.Larimore,Theory
andDesignofAdaptiveFilters.NewYork:Wiley,1987.[14]M.Bellanger,AdaptiveDigitalFiltersandSignalAnalysis.
NewYork:MarcelDekker,1987.
[15]S.Haykin,AdaptiveFilterTheory,2nded.EnglewoodCliffs,
NJ:Prentice-Hall,1991.
[16]P.M.Clarkson,OptimalandAdaptiveSignalProcessing.
BocaRaton,FL:CRCPress,1993.
[17]J.C.Burgess,“Activeadaptivesoundcontrolinaduct:Acom-putersimulation,”J.Acoust.Soc.Amer.,vol.70,pp.715–726,Sept.1981.
[18]G.E.Warnaka,J.Tichy,andL.A.Poole,“Improvementsin
adaptiveactiveattenuators,”inProc.Inter-noise,1981,pp.307–310.
[19]K.Kido,“Reductionofnoisebyuseofadditionalsound
sources,”inProc.Inter-noise,1975,pp.7–650.
[20]C.F.Ross,“Ademonstrationofactivecontrolofbroadband
sound,”J.SoundVib.,vol.74,no.3,pp.411–417,1981.
[21]S.M.KuoandC.Chen,“Implementationofadaptivefilters
withtheTMS320C25ortheTMS320C30,”inDigitalSignalProcessingApplicationswiththeTMS320Family,vol.3,P.Papamichalis,Ed.EnglewoodCliffs,NJ:Prentice-Hall,1990,ch.7,pp.191–271.
[22]L.J.Eriksson,“Computer-aidedsilencing—Anemergingtech-nology,”SoundVib.,vol.24,pp.42–45,July1990.
[23]M.Nishimura,“Someproblemsofactivenoisecontrolfor
practicaluse,”inProc.Int.Symp.ActiveControlofSoundVibration,1991,pp.157–1.
[24]D.R.Morgan,“Ahierarchyofperformanceanalysistechniques
foradaptiveactivecontrolofsoundandvibration,”J.Acoust.Soc.Amer.,vol.,pp.2362–2369,May1991.
[25]A.Roure,“Self-adaptivebroadbandactivesoundcontrolsys-tem,”J.SoundVib.,vol.101,pp.429–441,1985.
[26]H.F.OlsonandE.G.May,“Electronicsoundabsorber,”J.
Acoust.Soc.Amer.,vol.25,pp.1130–1136,Nov.1953.
[27]H.F.Olson,“Electroniccontrolofnoise,vibration,andre-verberation,”J.Acoust.Soc.Am.,vol.28,pp.966–972,Sept.1956.
[28]G.C.Carter,“Coherenceandtimedelayestimation,”Proc.
IEEE,vol.75,pp.236–255,Feb.1987.
[29]S.M.KuoandJ.Tsai,“Acousticalmechanismsandperfor-manceofvariousactiveductnoisecontrolsystems,”Appl.Acoust.,vol.41,no.1,pp.81–91,1994.
970
[30]S.J.ElliottandP.A.Nelson,“Theapplicationofadaptive
filteringtotheactivecontrolofsoundandvibration,”ISVR,Univ.Southampton,U.K.,Tech.Rep.136,Sept.1985.
[31]D.R.Morgan,“Ananalysisofmultiplecorrelationcancellation
loopswithafilterintheauxiliarypath,”IEEETrans.Acoust.,Speech,SignalProcessing,vol.ASSP-28,pp.454–467,Aug.1980.
[32]B.Widrow,D.Shur,andS.Shaffer,“Onadaptiveinverse
control,”inProc.15thAsilomarConf.,1981,pp.185–1.[33]S.J.ElliottandP.A.Nelson,“Activenoisecontrol,”IEEE
SignalProcessingMag.,vol.10,pp.12–35,Oct.1993.
[34]C.C.Boucher,S.J.Elliott,andP.A.Nelson,“Theeffectsof
modelingerrorsontheperformanceandstabilityofactivenoisecontrolsystems,”inProc.RecentAdvancesinActiveControlofSoundVibration,1991,pp.290–301.[35],“Effectoferrorsintheplantmodelontheperformanceof
algorithmsforadaptivefeedforwardcontrol,”Proc.Inst.Elect.Eng.,pt.F,vol.138,pp.313–319,Aug.1991.
[36]S.D.SnyderandC.H.Hansen,“Theeffectoftransferfunction
estimationerrorsonthefiltered-XLMSalgorithm,”IEEETrans.SignalProcessing,vol.42,pp.950–953,Apr.1994.
[37]G.Long,F.Ling,andJ.G.Proakis,“TheLMSalgorithmwith
delayedcoefficientadaptation,”IEEETrans.Acoust.,Speech,SignalProcessing,vol.37,pp.1397–1405,Sept.19.
,“Correctionsto‘TheLMSalgorithmwithdelayedco-[38]
efficientadaptation’,”IEEETrans.SignalProcessing,vol.40,pp.230–232,Jan.1992.
[39]S.J.Elliott,I.M.Stothers,andP.A.Nelson,“Amultipleerror
LMSalgorithmanditsapplicationtotheactivecontrolofsoundandvibration,”IEEETrans.Acoust.,Speech,SignalProcessing,vol.ASSP-35,pp.1423–1434,Oct.1987.
[40]R.D.Gitlin,H.C.Meadors,andS.B.Weinstein,“Thetap-leakagealgorithm:Analgorithmforthestableoperationofadigitallyimplemented,fractionallyspacedadaptiveequalizer,”BellSyst.Tech.J.,vol.61,pp.1817–1839,Oct.1982.
[41]S.LaugesenandS.J.Elliott,“Multichannelactivecontrolof
randomnoiseinasmallreverberantroom,”IEEETrans.SignalProcessing,vol.1,pp.241–249,Apr.1993.
[42]P.R.EnderleandG.R.Batta,“Stabilityofactivenoisecontrol
systemsinducts,”inProc.Noise-Con,1990,pp.167–172.[43]M.M.SondhiandD.A.Berkley,“Silencingechoesonthe
telephonenetwork,”Proc.IEEE,vol.68,pp.948–963,Aug.1980.
[44]L.A.Poole,G.E.Warnaka,andR.C.Cutter,“Theimplementa-tionofdigitalfilterusingamodifiedWidrow-Hoffalgorithmfortheadaptivecancellationofacousticnoise,”inProc.ICASSP,1984,pp.21.7.1–21.7.4.
[45]J.R.Treichler,“Adaptivealgorithmsforinfiniteimpulsere-sponsefilters,”inAdaptiveFilters,C.F.N.CowanandP.M.Grant,Eds.EnglewoodCliffs,NJ:Prentice-Hall,1985,ch.4.[46]J.J.Shynk,“AdaptiveIIRfiltering,”IEEEAcoust.Speech
SignalProcessingMag.,Apr.19,pp.4–21.
[47]L.J.Eriksson,M.C.Allie,andR.A.Greiner,“Theselection
andapplicationofanIIRadaptivefilterforuseinactivesoundattenuation,”IEEETrans.Acoust.,Speech,SignalProcessing,vol.ASSP-35,pp.433–437,Apr.1987.
[48]P.L.Feintuch,“AnadaptiverecursiveLMSfilter,”Proc.IEEE,
vol.,pp.1622–1624,Nov.1976.
[49]L.J.Eriksson,“Developmentofthefiltered-Ualgorithmforac-tivenoisecontrol,”J.Acoust.Soc.Amer.,vol.,pp.257–265,Jan.1991.
[50]M.L.MunjalandL.J.Eriksson,“Ananalytical,one-dimensional,standing-wavemodelofalinearactivenoisecontrolsysteminaduct,”J.Acoust.Soc.Amer.,vol.84,pp.1086–1093,Sept.1988.
[51]L.J.Eriksson,M.C.Allie,C.D.Bremigan,andJ.A.Gilbert,
“Activenoisecontrolonsystemswithtime-varyingsourcesandparameters,”SoundVibration,vol.23,pp.16–21,July19.[52]M.G.Larimore,J.R.Treichler,andC.R.Johnson,Jr.,
“SHARF:AnalgorithmforadaptiveIIRdigitalfilters,”IEEETrans.Acoust.,Speech,SignalProcessing,vol.ASSP-28,pp.428–440,Aug.1980.
[53]S.M.KuoandJ.Tapia,“Theimplementationofmodified
leakySHARFalgorithmfortheactivenoisecancellation,”inProc.IEEEASSPWorkshopApplicationsofSignalProcessingtoAudioandAcoustics,19.
[54]S.J.ElliottandP.Darlington,“Adaptivecancellationof
periodic,synchronouslysampledinterference,”IEEETrans.
PROCEEDINGSOFTHEIEEE,VOL.87,NO.6,JUNE1999
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
[55][56]
[57][58][59][60][61][62]
[63][]
[65][66][67][68][69][70][71][72][73][74][75][76][77][78][79][80][81]
Acoust.,Speech,SignalProcessing,vol.ASSP-33,pp.715–717,June1985.
B.Chaplin,“Thecancellationofrepetitivenoiseandvibration,”inProc.Inter-noise,1980,pp.699–702.
B.Widrow,J.R.Glover,J.M.McCool,J.Kaunitz,C.S.Williams,R.H.Hern,J.R.Zeidler,E.Dong,andR.C.Goodlin,“Adaptivenoisecanceling:Principlesandapplications,”Proc.IEEE,vol.63,pp.1692–1716,Dec.1975.
E.Ziegler,Jr.,“Selectiveactivecancellationsystemforrepeti-tivephenomena,”U.S.Patent4878188,Oct.31,19.
P.DarlingtonandS.J.Elliott,“Stabilityandadaptivelycon-trolledsystems—Agraphicalapproach,”inProc.ICASSP,1987,pp.399–402.
,“Synchronousadaptivefilterswithdelayedcoefficientadaptation,”inProc.ICASSP,1988,pp.2586–25.
D.R.MorganandJ.Thi,“Amultitonepseudocascadefiltered-XLMSadaptivenotchfilter,”IEEETrans.SignalProcessing,vol.41,pp.946–956,Feb.1993.
J.R.Glover,Jr.,“Adaptivenoisecancelingappliedtosinusoidalinterferences,”IEEETrans.Acoust.,Speech,SignalProcessing,vol.ASSP-25,pp.484–491,Dec.1977.
D.R.MorganandC.Sanford,“Acontroltheoryapproachtothestabilityandtransientanalysisofthefiltered-XLMSadaptivenotchfilter,”IEEETrans.SignalProcessing,vol.40,pp.2341–2346,Sept.1992.
S.M.KuoandM.Ji,“Passbanddisturbancereductioninperiodicactivenoisecontrolsystems,”IEEETrans.SpeechAudioProcessing,vol.4,pp.96–103,Mar.1996.
S.M.Kuo,S.Zhu,andM.Wang,“Developmentofoptimumadaptivenotchfilterforfixed-pointimplementationinactivenoisecontrol,”inProc.1992Int.Conf.IndustrialElectronics,1992,pp.1376–1378.
D.P.Pfaff,N.S.Kapsokavathis,andN.A.Parks,“Methodforactivelyattenuatingenginegeneratednoise,”U.S.Patent5146505,Sept.8,1992.
Y.Yuan,N.S.Kapsokavathis,K.Chen,andS.M.Kuo,“Activenoisecontrolsystem,”U.S.Patent5359662,Oct.25,1994.S.M.Kuo,M.J.Ji,M.K.Christensen,andR.A.Herold,“Indirectlysensedsignalprocessinginactiveperiodicacousticnoisecancellation,”U.S.Patent5502770,Mar.26,1996.P.D.Hill,“Activeacousticattenuationsystemforreducingtonalnoiseinrotatingequipment,”U.S.Patent5010576,Apr.23,1991.
S.M.KuoandM.J.Ji,“Developmentandanalysisofanadap-tivenoiseequalizer,”IEEETrans.SpeechAudioProcessing,vol.3,pp.217–222,May1995.
S.M.Kuo,M.Tahernezhadi,andL.Ji,“Frequency-domainperiodicactivenoisecontrolandequalization,”IEEETrans.SpeechAudioProcessing,vol.5,pp.348–358,July1997.S.M.KuoandY.Yang,“Broadbandadaptivenoiseequalizer,”IEEESignalProcessingLett.,vol.3,pp.234–235,Aug.1996.L.J.Eriksson,“Recursivealgorithmsforactivenoisecontrol,”inProc.Int.Symp.ActiveControlofSoundVibration,1991,pp.137–146.
S.R.Popovich,D.E.Melton,andM.C.Allie,“Newadaptivemulti-channelcontrolsystemsforsoundandvibration,”inProc.Inter-noise,1992,pp.405–408.
S.M.KuoandD.Vijayan,“Adaptivefeedbackactivenoisecontrol,”inProc.Noise-Con,1994,pp.473–478.
S.J.ElliottandT.J.Sutton,“Performanceoffeedforwardandfeedbacksystemsforactivecontrol,”IEEETrans.SpeechAudioProcessing,vol.4,pp.214–223,May1996.
D.GraupeandA.J.Efron,“Anoutput-whiteningapproachtoadaptiveactivenoisecancellation,”IEEETrans.CircuitsSyst.II,vol.38,pp.1306–1313,Nov.1991.
A.J.EfronandL.C.Han,“Wide-areaadaptiveactivenoisecan-cellation,”IEEETrans.CircuitsSyst.II,vol.41,pp.405–409,June1994.
A.V.Oppenheim,E.Weinstein,K.C.Zangi,M.Feder,andD.Gauger,“Single-sensoractivenoisecancellation,”IEEETrans.SpeechAudioProcessing,vol.2,pp.285–290,Apr.1994.K.C.Zangi,“Anewtwo-sensoractivenoisecancellationalgorithm,”inProc.ICASSP,vol.II,1993,pp.351–354.
D.C.Swanson,“Activenoiseattenuationusingaself-tuningregulatorastheadaptivecontrolalgorithm,”inProc.Inter-noise,19,pp.467–470.
S.J.Elliott,I.M.Stothers,P.A.Nelson,A.M.McDonald,D.C.Quinn,andT.Saunders,“Theactivecontrolofenginenoiseinsidecars,”inProc.Inter-noise,1988,pp.987–990.[82]A.M.McDonald,S.J.Elliott,andM.A.Stokes,“Activenoise
andvibrationcontrolwithintheautomobile,”inProc.Int.Symp.ActiveControlofSoundVibration,1991,pp.147–156.
[83]Y.KurataandN.Koike,“Adaptiveactiveattenuationofinterior
carnoise,”inProc.Int.Symp.ActiveControlofSoundVibration,1991,pp.297–302.
[84]C.F.Ross,“Thecontrolofnoiseinsidepassengervehicles,”
inProc.RecentAdvancesinActiveControlofSoundVibration,1991,pp.671–681.
[85]S.M.KuoandB.M.Finn,“Ageneralmulti-channelfiltered
LMSalgorithmfor3-Dactivenoisecontrolsystems,”inProc.2ndInt.Conf.RecentDevelopmentsinAir-andStructure-BorneSoundVib.,1992,pp.345–352.
[86]M.A.Simpson,T.M.Luong,M.A.Swinbanks,M.A.Russell,
andH.G.Leventhall,“Fullscaledemonstrationtestsofcabinnoisereductionusingactivenoisecontrol,”inProc.Inter-noise,19,pp.459–462.
[87]C.M.Dorling,G.P.Eatwell,S.M.Hutchins,C.F.Ross,and
S.G.C.Sutcliffe,“Ademonstrationofactivenoisereductioninanaircraftcabin,”J.SoundVibration,vol.128,no.2,pp.358–360,19.
[88]S.J.Elliott,P.A.Nelson,I.M.Stothers,andC.C.Boucher,
“In-flightexperimentsontheactivecontrolofpropeller-inducedcabinnoise,”J.SoundVibration,vol.140,no.2,pp.219–238,1990.
[]P.A.Nelson,A.R.D.Curtis,S.J.Elliott,andA.J.Bullmore,
“Theactiveminimizationofharmonicenclosedsoundfields,PartI:Theory,”J.SoundVibration,vol.117,no.1,pp.1–13,1987.
[90]A.J.Bullmore,P.A.Nelson,A.R.D.Curtis,andS.J.Elliott,
“Theactiveminimizationofharmonicenclosedsoundfields,PartII:Acomputersimulation,”J.SoundVibration,vol.117,no.1,pp.15–33,1987.
[91]S.J.Elliott,A.R.D.Curtis,A.J.Bullmore,andP.A.Nelson,
“Theactiveminimizationofharmonicenclosedsoundfields,PartIII:Experimentalverification,”J.SoundVibration,vol.117,no.1,pp.35–58,1987.
[92]S.J.Elliott,C.C.Boucher,andP.A.Nelson,“Thebehaviorof
amultiplechannelactivecontrolsystem,”IEEETrans.SignalProcessing,vol.40,pp.1041–1052,May1992.
[93]P.A.Nelson,A.R.D.Curtis,S.J.Elliott,andA.J.Bullmore,
“Theminimumpoweroutputoffreefieldpointsourcesandtheactivecontrolofsound,”J.SoundVibration,vol.116,no.3,pp.397–414,1987.
[94]D.C.Swanson,“Thegeneralizedmultichannelfiltered-Xalgo-rithm,”inProc.RecentAdvancesinActiveControlofSoundVibration,1993,pp.550–561.
[95]S.J.ElliottandC.C.Boucher,“Interactionbetweenmultiple
feedforwardactivecontrolsystems,”IEEETrans.SpeechAudioProcessing,vol.2,pp.521–530,Oct.1994.
[96]D.E.MeltonandR.A.Greiner,“Adaptivefeedforward
multiple-input,multiple-outputactivenoisecontrol,”inProc.ICASSP,vol.II,1992,pp.229–232.
[97]S.M.KuoandD.Vijayan,“Adaptivealgorithmsandexperi-mentalverificationoffeedbackactivenoisecontrolsystems,”NoiseControlEng.J.,vol.42,pp.37–46,Mar.–Apr.1994.[98]S.P.Rubenstein,S.R.Popovich,D.E.Melton,andM.C.
Allie,“Activecancellationofhighermodesinaductusingrecursively-coupledmultichanneladaptivecontrolsystem,”inProc.Inter-noise,1992,pp.337–340.
[99]L.J.ErikssonandM.C.Allie,“Useofrandomnoiseforon-line
transducermodelinginanadaptiveactiveattenuationsystem,”J.Acoust.Soc.Amer.,vol.85,pp.797–802,Feb.19.
[100]C.Bao,P.Sas,andH.VanBrussel,“Adaptiveactivenoisecon-trolina3-Dreverberantenclosure,”inProc.RecentAdvancesinActiveControlofSoundVibration,1991,pp.691–707.
,“Adaptiveactivecontrolofnoisein3-Dreverberant[101]
enclosures,”J.SoundVibration,vol.161,no.3,pp.501–514,1993.
[102]S.M.KuoandD.Vijayan,“Asecondarypathmodeling
techniqueforactivenoisecontrolsystems,”IEEETrans.SpeechAudioProcessing,vol.5,pp.374–377,July1997.
[103]S.D.SommerfeldtandJ.Tichy,“Adaptivevibrationcontrol
usinganLMS-basedcontrolalgorithm,”inProc.Inter-noise,19,pp.513–518.[104],“Adaptivecontrolofatwo-stagevibrationisolation
mount,”J.Acoust.Soc.Amer.,vol.88,pp.938–944,Aug.1990.[105]J.TapiaandS.M.Kuo,“Newadaptiveon-linemodeling
971
KUOANDMORGAN:ACTIVENOISECONTROL
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
[106][107][108]
[109][110][111][112]
[113][114]
[115][116][117]
[118][119][120]
[121][122][123][124][125][126]
[127]
[128]
[129]
techniqueforactivenoisecontrolsystems,”inProc.IEEEInt.Conf.SystemsEngineering,1990,pp.280–283.
S.M.KuoandM.Wang,“Paralleladaptiveon-lineerror-pathmodelingalgorithmforactivenoisecontrolsystems,”Electron.Lett.,vol.28,pp.375–377,Feb.1992.
S.M.Kuo,M.Wang,andK.Chen,“Activenoisecontrolsystemwithparallelon-lineerrorpathmodelingalgorithm,”NoiseControlEng.J.,vol.39,pp.119–127,Nov.–Dec.1992.S.M.KuoandJ.Luan,“Multiple-channelerrorpathmod-elingwiththeinter-channeldecouplingalgorithm,”inProc.RecentAdvancesinActiveControlofSoundVibration,1993,pp.767–777.
S.D.Sommerfeldt,“Multi-channeladaptivecontrolofstruc-turalvibration,”NoiseControlEng.J.,vol.37,pp.77–,Sept.–Oct.,1991.
S.M.KuoandB.M.Finn,“Anintegratedaudioandactivenoisecontrolsystem,”inProc.IEEEInt.Symp.CircuitsSyst.,1993,pp.2529–2532.
S.M.Kuo,H.Chuang,andP.Mallela,“Integratedhands-freecellular,activenoisecontrol,andaudiosystem,”IEEETrans.ConsumerElectron.,vol.39,pp.522–532,Aug.1993.
R.W.Harris,D.M.Chabries,andF.A.Bishop,“Avari-ablestep(VS)adaptivefilteralgorithm,”IEEETrans.Acoust.,Speech,SignalProcessing,vol.ASSP-34,pp.309–316,Apr.1986.
C.Kwong,“Dualsignalgorithmforadaptivefiltering,”IEEETrans.Commun.,vol.COM-34,pp.1272–1275,Dec.1986.W.B.Mikhael,F.H.Wu,L.G.Kazovsky,G.S.Kang,andL.J.Fransen,“Adaptivefilterswithindividualadaptationofparameters,”IEEETrans.CircuitsSyst.,vol.CAS-33,pp.677–685,July1986.
T.J.ShanandT.Kailath,“Adaptivealgorithmswithanautomaticgaincontrolfeature,”IEEETrans.CircuitsSyst.,vol.CAS-35,pp.122–127,Jan.1988.
H.Hamada,T.Miura,M.Takahashi,andY.Oguri,“Adaptivenoisecontrolsysteminair-conditioningducts,”inProc.Inter-noise,1988,pp.1017–1020.
M.Takahashi,R.Gotohda,T.Yamadera,K.Asami,andH.Hamada,“Broadbandactivenoisecontrolofair-conditioningductsystemsinauditoriums,”inProc.Int.Symp.ActiveControlofSoundVibration,1991,pp.273–278.
L.J.Griffiths,“Acontinuouslyadaptivefilterimplementedasalatticestructure,”inProc.ICASSP,1977,pp.683–686.
,“Anadaptivelatticestructurefornoisecancelingappli-cations,”inProc.ICASSP,1978,pp.87–90.
S.M.KuoandJ.Luan,“Cross-coupledfiltered-XLMSalgo-rithmandlatticestructureforactivenoisecontrolsystems,”inProc.1993IEEEInt.Symp.CircuitsSystems,1993,pp.459–462.
K.CharandS.M.Kuo,“Performanceevaluationofvariousactivenoisecontrolalgorithms,”inProc.Noise-Con,1994,pp.331–336.
M.Dentino,J.M.McCool,andB.Widrow,“Adaptivefilteringinthefrequencydomain,”Proc.IEEE,vol.66,pp.1658–1659,Dec.1978.
E.R.Ferrara,Jr.,“Frequency-domainadaptivefiltering,”inAdaptiveFiltering,C.CowanandP.Grant,Eds.EnglewoodCliffs,NJ:Prentice-Hall,1985,ch.6.
N.Ahmed,T.Natarajan,andK.R.Rao,“Discretecosinetransform,”IEEETrans.Comput.,vol.C-23,pp.90–93,1974.R.N.Bracewell,“ThefastHartleytransform,”Proc.IEEE,vol.72,pp.1010–1018,Aug.1984.
Q.ShenandA.Spanias,“TimeandfrequencydomainX-blockLMSalgorithmsforsinglechannelactivenoisecontrol,”inProc.2ndInt.Congr.RecentDevelopmentsinAir-andStructure-BorneSoundVibration,1992,pp.353–360.
K.M.ReichardandD.C.Swanson,“Frequency-domainim-plementationofthefiltered-Xalgorithmwithon-linesystemidentification,”inProc.RecentAdvancesinActiveControlofSoundVibration,1993,pp.562–573.
Q.ShenandA.Spanias,“Frequency-domainadaptivealgo-rithmsformulti-channelactivesoundcontrol,”inProc.Re-centAdvancesinActiveControlofSoundVibration,1993,pp.755–766.
M.M.SondhiandW.Kellermann,“Adaptiveechocancellationforspeechsignals,”inAdvancesinSpeechSignalProcessing,S.FuruiandM.Sondhi,Eds.NewYork:MarcelDekker,1992,ch.11.[130]J.J.Shynk,“Frequency-domainandmultirateadaptivefilter-ing,”IEEESignalProcessingMag.,vol.9,pp.14–37,Jan.1992.
[131]J.ThiandD.R.Morgan,“Delaylesssubbandactivenoise
control,”inProc.ICASSP,vol.I,1993,pp.181–184.
[132]D.R.MorganandJ.Thi,“Adelaylesssubbandadaptivefilter,”
IEEETrans.SignalProcessing,vol.8,pp.1819–1830,Aug.1995.
[133]J.M.CioffiandT.Kailath,“Fast,recursive-least-squares
transversalfiltersforadaptivefiltering,”IEEETrans.Acoust.,Speech,SignalProcessing,vol.ASSP-32,pp.304–337,Apr.1984.
[134]L.Meirovitch,IntroductiontoDynamicsandControl.New
York:Wiley,1985.
[135]L.Meirovitch,H.Baruh,andH.Oz,“Comparisonofcontrol
techniquesforlargeflexiblesystems,”J.Guid.ControlDyn.,vol.6,pp.302–310,July–Aug.1983.
[136]L.MeirovitchandH.Baruh,“Robustnessoftheindependent
modal-spacecontrolmethod,”J.Guid.ControlDyn.,vol.6,pp.20–25,Jan.–Feb.1983.
[137]H.BaruhandL.Silverberg,“Robustnaturalcontrolofdis-tributedsystems,”J.Guid.ControlDyn.,vol.8,pp.717–724,Nov.–Dec.1985.
[138]D.R.Morgan,“Anadaptivemodal-basedactivecontrolsys-tem,”J.Acoust.Soc.Amer.,vol.,pp.248–256,Jan.1991.[139]C.P.Nowicki,D.P.Mendat,andD.G.Smith,“Active
attenuationofmotor/blowernoise,”inProc.Noise-Con,1994,pp.415–420.
[140]J.N.Denenberg,“Anti-noise—Quietingtheenvironmentwith
activenoisecancellationtechnology,”IEEEPotentials,vol.11,pp.36–40,Apr.1992.
[141]K.EghtesadiandE.Ziegler,“Frequencydomainadaptive
controlalgorithmforelectronicmufflerapplications,”inProc.RecentAdvancesinActiveControlofSoundVib.,1993,pp.574–585.
[142]G.B.B.Chaplin,R.A.Smith,andT.P.C.Bramer,“Method
andapparatusforreducingrepetitivenoiseenteringtheear,”U.S.Patent4654871,Mar.31,1987.
[143]D.A.Quinlan,“Applicationofactivecontroltoaxialflow
fans,”NoiseControlEng.J.,vol.39,pp.95–101,Nov.–Dec.1992.
[144]M.P.McLonghlin,K.Eghtesadi,D.G.Smith,andE.W.
Ziegler,Jr.,“Activecontrolofbladepassagenoiseinsmallcentrifugalfanswithmultipletransducers,”inProc.Inter-noise,1992,pp.325–328.
[145]D.L.SutliffandR.T.Nagel,“Developmentofanactivenoise
controlsystemforductedfans(withoutacousticfeedback),”inProc.RecentAdvancesinActiveControlofSoundVib.,1993,pp.825–836.
[146]T.J.Sutton,S.J.Elliott,A.M.McDonald,andT.J.Saunders,
“Activecontrolofroadnoiseinsidevehicles,”NoiseControlEng.J.,vol.42,pp.137–147,July–Aug.1994.
[147]C.R.FullerandJ.D.Jones,“Experimentsonreductionof
propellerinducedinteriornoisebyactivecontrolofcylindervibration,”J.SoundVib.,vol.112,pp.3–395,1987.
[148]C.R.FullerandG.P.Gibbs,“Activecontrolofinteriornoise
inabusinessjetusingpiezoceramicactuators,”inProc.Noise-Con,1994,pp.3–394.
[149]A.OmotoandK.Fujiwara,“Astudyofanactivelycontrolled
noisebarrier,”J.Acoust.Soc.Am.,vol.94,pp.2173–2180,Oct.1993.
[150]S.E.CraigandO.L.Angevine,“Activecontrolofhum
fromlargepowertransformers—Therealworld,”inProc.RecentAdvancesinActiveControlofSoundVibration,1993,pp.279–290.
[151]K.Kido,“Fromonepointtothreedimensioncontrol,”inProc.
Int.Symp.ActiveControlofSoundVibration,1991,pp.1–10.[152]D.R.BrowningandD.R.Morgan,“Apseudo-cascadeFXLMS
approachtoactivevibrationcancellation,”inProc.Noise-Con,1991,pp.353–360.
[153]B.M.Finn,“Threedimensionalactivenoisecontrolwith
integratedaudiocapabilities,”M.S.thesis,NorthernIllinoisUniv.,DeKalb,IL.1992.
[154]J.Luan,“On-linemodelingandfeedbackcompensationtech-niquesfor3-dactivenoisecontrolsystems,”M.S.thesis,NorthernIllinoisUniv.,DeKalb,IL,May1993.
[155]M.J.Ji,“Narrowbandactivenoisecontrolandequalization,”
M.S.thesis,NorthernIllinoisUniv.,DeKalb,IL,Aug.1993.
PROCEEDINGSOFTHEIEEE,VOL.87,NO.6,JUNE1999
972
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
[156]D.Vijayan,Feedbackactivenoisecontrolsystems,M.S.thesis,
NorthernIllinoisUniv.,DeKalb,IL,May1994.
SenM.KuoreceivedtheB.S.degreefromNationalTaiwanNormalUniversity,Teipei,Taiwan,in1976andtheM.S.andPh.D.degreesfromUniversityofNewMexico,Albuquerque,in1983and1985,respectively.
In1993,hewaswithTexasInstruments,Houston,TX.HeiscurrentlyanAssociateProfessorattheDepartmentofElectricalEngineering,NorthernIllinoisUniversity,DeKalb,IL.Hehasservedasaconsultantintheareasofdigitalsignalprocessingapplications
toGeneralMotors,TexasInstruments,Motorola,Tellabs,andothers.HeistheauthorofActiveNoiseControlSystems:AlgorithmsandDSPImplementations(NewYork:Wiley,1996)andofnumeroustechnicalpapers.Hehasbeenawardedtwopatents.Hisresearchfocusesonactivenoisecontrol,adaptiveechocancellation,digitalaudioapplications,anddigitalcommunications.
In1993,Dr.KuoreceivedtheIEEEConsumerElectronicsSocietyChesterSallAwardfortheFirstPlaceTransactionsPaperAward.HeisamemberofEtaKappaNu.
DennisR.Morgan(SeniorMember,IEEE)wasborninCincinnati,OH,onFebruary19,1942.HereceivedtheB.S.degreein1965fromtheUniversityofCincinnati,OH,andtheM.S.andPh.D.degreesfromSyracuseUniversity,Syracuse,NY,in1968and1970,respectively,allinelectricalengineering.
From1965to1984,hewaswiththeGen-eralElectricCompany,ElectronicsLaboratory,Syracuse,NY,specializingintheanalysisanddesignofsignalprocessingsystemsusedin
radar,sonar,andcommunications.HeisnowaDistinguishedMemberofTechnicalStaffatBellLaboratories,LucentTechnologies(formerlyAT&T),MurrayHill,NJ,wherehehasbeenemployedsince1984.From1984to1990,hewaswiththeSpecialSystemsAnalysisDepartment,Whippany,NJ,wherehewasinvolvedintheanalysisanddevelopmentofadvancedsignalprocessingtechniquesassociatedwithcommunications,arrayprocessing,detectionandestimation,andadaptivesystems.Since1990,hehasbeenwiththeAcousticsResearchDepartment,whereheisengagedinresearchonadaptivesignalprocessingtechniquesappliedtoelectroacousticsystems.Hehasauthorednumerousjournalpublicationsandisco-athorofActiveNoiseControlSystems:AlgorithmsandDSPImplementations(NewYork:Wiley,1996).
Dr.MorganhasservedasAssociateEditorforIEEETRANSACTIONSONSPEECHANDAUDIOPROCESSINGsince1995.
KUOANDMORGAN:ACTIVENOISECONTROL
Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.
973
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo0.cn 版权所有 湘ICP备2023017654号-2
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务