简析电力通信系统中的光纤通信组网技术及发展趋势
摘要:随着经济的发展,电力通信在生活和生产中的地位和影响越来越重要,其关键内容之一的光纤通信技术的重要性也与日俱增,科学技术的高速发展为光纤通信技术的进步提供了坚实的基础,光纤通信的质量与效率对现代电网的运行效用也有着至关重要的影响,本文概述了电力通信系统的特点,结合实际讨论了光纤通信在电力系统中的组网技术及发展趋势。
关键词:电力通信光纤通信组网技术发展趋势 1、光纤通信的种类
单模和多模是光纤通信的基本种类,众所周知光纤的优势在于损耗小、容量大,不受外界干扰。单模光纤在费用方面较多模光纤要贵,由于多模光纤的费用低廉,而且在信息量和传输速率方面优于单模光纤,所以现实应用也越来越广泛。光纤通信技术的发展一直在追求小能耗,少量的信号衰减,色散也是光纤技术需要考虑的问题。另外运行的频率和波长也会影响到传输的效果。
在利用光纤传输的技术方面,目前主流的两种就是波分充分利用和接入耦合。前者是在单模光纤损耗的基础上,依据光波的频率波长不同区分窗口。将信息加载到不同波长的光波中,在复合式的波分器中进行多信号的输送。由于光束的频率不同,即使在同一根光缆中也是相互间的,所以可以大大提高传输效率和信息量。这种技术的应用提高了传输的信息量和传输的长度。
2、光纤通信的特点
光纤通信是以光波为载波,以光导纤维为传输媒质的一种通信方式。光纤是一种介质光波导,具有把光封闭在其中并沿轴向进行传播的导波结构。光纤通信之所以能够飞速发展,主要有以下突出的优点:
2.1传输频带宽、通信容量大
光纤大约可以利用50000GHz传输带宽,光纤通信系统的容许频带(带宽)是由光源的调制特性、调制方式和光纤的色散特性决定的。比如单波长光纤通信系统通常采用密集波分复用等复杂技术,来解决终端设备的电子瓶颈效应的问题,使光纤带宽发挥应有的优势,进而增加光纤传输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到10Gbps。
2.2由于光纤的损耗低,因此中继距离可以很长,在通信线路中可减少中继站的数量,降低成本,而且又提高了通信质量。
2.3抗电磁干扰能力强
光纤原材料是由石英制成,绝缘性好,不易被腐蚀。故光波导对电磁干扰有
很强免疫力,它不受雷电、电离层的变化和太阳黑子活动等自然电磁的干扰,也不受人为释放的电磁干扰,这对于通信材料来说,是个很大的优势。除以上特点之外,还有光纤径细、重量轻、节约空间、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。由于光纤通信具有以上的独特优点,使其应用的范围也越来越广泛。
2.4方便架设与维护
电力系统光纤通信可以充分利用电力系统的杆塔资源与电力线路同杆架设;由于与电力线路互相,不影响输电线路和光缆的正常维修。
3、电力通信系统中的常用光纤
3.1光纤复合地线
光纤复合地线是指在电力传输线路中,地线中含有一定的光纤单元,这种光纤单元不仅具备地线的作用,而且还有光纤的优点,使用起来非常可靠,而且不需要特别的维护。但是,光纤复合地线还有一个非常大的缺点,就是投资额非常大。这样的光纤比较适用于新线路的建设和旧电路的更新。电力通信系统中的光纤复合地线不仅可以保护输电线路的的雷击现象,而且能够利用地线中的光纤传输信息,同时还能够满足架空地线的要求。
3.2光纤复合相线
所谓光纤复合相线就是将光纤单元复合在输电线路相线中的一种电力光缆。光纤复合相线充分利用了电力系统的线路资源,有效避免了与外界之间的矛盾,是一种在电力通信系统中出现的新型光缆。光纤复合相线有效的解决了架空线路的受限问题,避免了雷击事件的发生。与此同时,光纤复合相线的使用,有效地保证了地线绝缘方式的运行方式,节约了电能。
3.3自承式光缆。自承式光缆分为金属自承式光缆和全介质自承式光缆。金属自承式光缆结构简单、成本低,在电力系统的应用中不需要考虑短路电流和热容量等,因此金属自承式光缆的应用非常广。全介质自承式光缆质量轻、直径小,而且是全绝缘结构,同时还具有相当稳定的光学性能,能够大量减少停电的损失,可以说是特种光纤。
4、电力通信中光纤通信网的组网技术
4.1波分复用技术
波分复用技术就是指将许多不同波长的光信号复合到同一根光纤上,通过再进行传输的技术。在光纤传输的过程中,根据光波的波长将光纤的低损耗窗口进行划分,将一个信道划分成若干个信道,将光波视为信号载波,然后将不同波长的信号合并到一起,送入到同一根光纤中进行信号的传输。在信号的接收端,再
将不同波长的信号分开。不同波长的载波信号是相互的,在一根光纤中能够实现多路光信号的传输。如果将两个方向的信号安放在不同的波长进行传输,就实现了双向的传输。由于两个相邻的波峰之间的间隔不同,波分复用技术又被分为密集波分复用技术和粗波分复用技术,密集波分复用技术能够实现对高容量信息的传输,是新型网络构建的最佳手段。
4.2同步数字技术
同步数字体系是一种集复接、交换,以及线路传输等为一体的、并由网络管理系统统一操作的信息传输网络。同步数字技术对数位信号提供一定的等级,通过复用和映射方法,把低级的同步数字技术转化为高级的同步数字技术,在实现了网络同步传输的同时,还大大提高了网络的速度,增加了网络利用的效率。同步数字技术有效地将复接和分接技术简化了,使通信网络的灵活性和可靠性得到了提高。同步数字体系就是一套自我保护体系,能够使电力通信的可靠性要求得到满足,不仅提高电力通信的传输能力,而且安全性也较高。
5、电力通信中光纤通信技术的发展趋势
5.1光接入网
在未来,网络将发展成为由软件主宰的、数字化的、高度集成的智能化网络。现如今,接入网仍然以双绞线为主,双绞线虽然传输质量还行,但是与光纤相比,仍然有着一定的差距。光接入网不仅能够减少网络的维护与管理成本,而且能够增加新的经济收入,同时还能够建设光透明网络,走进真正的多媒体时代。
5.2新型光纤的使用
IP的业务量越来越大,电信网络必须要朝着下一代的方向发展,光纤设施正是下一代网络建设的物理基础。传统的单模光纤已经不能够满足长距离、高质量的信号传输了,新型光纤的开发是下一代网络建设的关键,直接关系着电力系统的发展。随着干线网的要求不断提高和城域网建设的发展,已经有两种新型的光纤得到了广泛的认可,一种是非零色散光纤,另一种是无水吸收峰光纤。这两种光纤在日后的电力通信系统中势必会得到广泛的应用与发展。
5.3光联网
光联网改善了传统的联网的弊端,不仅实现了超大容量的光网络,使得网络的节点数和网络的范围不断增加,而且还增强了网络的透明程度,使得不同系统的不同信号都得到了有效的连接,网络充足的灵活性大大加强。同时,光联网还实现了网络的快速恢复,恢复时间非常短,对电力系统的正常运行造不成任何损坏。因光联网有着非常多的优点,适应了电力系统的发展需求,因此,世界上的一些发达国家都投入了大量的人力、物力,和财力,国内也正在朝着这个方向发展。光联网势必会成为继同步数字系统电联网之后的一个新的光通信的发展的高峰,在未来的通信市场中占据举足轻重的位置,促进电力通信迈上一个新的发展
台阶。
6、结语
伴随着经济的快速发展,电力通信在生活和生产中的地位和影响愈发重要,而在其中起到关键作用的光纤通信技术的重要性也凸显出来。光纤通信在电力系统的广泛应用实现了电力通信网建设的低成本、大容量、多业务和智能化,保证了电网生产的安全经济运行,创造了巨大的经济效益和社会效益。光传输组网新技术的不断应用,加速了我国坚强智能电网的建设,电力通信技术的发展将成为电力网稳定运行的重要保障。