TREE-STRUCTUREDMETHODFORLUTINVERSEHALFTONINGANDFORIMAGE
HALFTONING
MuratMe¸seandP.P.VaidyanathanDepartmentofElectricalEngineering136-93,
CaliforniaInstituteofTechnology,Pasadena,CA91125USA,
Phone(626)395-4681Fax:(626)795-
E-mail:mese@systems.caltech.edu,ppvnath@sys.caltech.edu
SUBMITTEDTOIEEETRANSACTIONSONIMAGEPROCESSING
EDICS:4-DISPor4-OTHD
ABSTRACT1
RecentlytheauthorsproposedaLookUpTable(LUT)basedmethodforinversehalftoningofimages.TheLUTforinversehalftoningisobtainedfromthehistogramgatheredfromafewsamplehalftoneimagesandcorrespondingoriginalimages.ManyoftheentriesintheLUTareunusedbecausethecorrespondingbinarypatternshardlyoccurincommonlyencounteredhalftones.Thesearecallednonexistentpatterns.Inthispaper,weproposeatreestructurewhichwillreducethestoragerequirementsofanLUTbyavoidingnonexistentpatterns.Wewilldemonstratetheperformanceonerrordiffusedimagesandorderedditherimages.Then,weintroduceLUTbasedhalftoningandtree-structuredLUT(TLUT)halftoning.EventhoughTLUTmethodismorecomplexthanLUThalftoning,itproducesbetterhalftonesandrequiresmuchlessstoragethanLUThalftoning.Wewilldemonstratehowerrordiffusioncharacteristicscanbeachievedwiththismethod.Afterwards,ouralgorithmwillbetrainedonhalftonesobtainedbyDirectBinarySearch(DBS).ThecomplexityofTLUThalftoningishigherthanerrordiffusionalgorithmbutmuchlowerthanDBSalgorithm.Also,thehalftonequalityofTLUThalftoningincreasesifthesizeofTLUTgetsbigger.Thus,halftoneimagequalitybetweenerrordiffusionandDBSwillbeachieveddependingonthesizeoftree-structureinTLUTalgorithm.
SUBMITTEDTOIEEETRANSACTIONSONIMAGEPROCESSING2
I.Introduction
Inversehalftoningreferstoreconstructingacontinuoustoneimagefromitshalftonedversion.Thereisnouniqueinversehalftoneforagivenhalftonedimage.Hence,extrapropertiesofimagesareusedininversehalftoning.Thebasicassumptioninallinversehalftoningalgorithmsisthe“lowpass”assumption:“Natural”imageshave“mostlylowpass”characteristics.Thus,thesimplestinversehalftoningislowpassfilteringbutthismethodalsoremovestheedgeinformation.Besideslowpassfiltering,therearemoresophisticatedapproachesforinversehalftoning[1],[3],[2],[18],[20]and[4].Theseapproachesaresummarizedin[9].
Inrecentpapers[7],[8],[9]weintroducedLookUpTable(LUT)methodsforinversehalftoningofimages.TheLUTmethodwasfirstusedbyNetravalietal.todisplayorderedditheredimages[13].However,inthatworktheauthorsassumedthatthedithermatrixandtheregistrationofhalftonedimagewiththedithermatrixareknown.Noticethat,thisinformationmaynotbeknownforaparticularhalftoneimage.Inanotherpaper,TingandRiskinusedLUTmethodinhalftonecompressiontogetatemporarycontoneimage[15]butahighqualitycontoneimagewasnotaimedinthatwork.
Inthispaper,wereviewtheLUTinversehalftoningmethodinSec.II.Thenwewillintroducetree-structuredLUT(TLUT)inversehalftoningandshowhowtodesignTLUTinSectionIII.TheexperimentalresultsofTLUTinversehalftoningwillbeshowninSectionIV.Inthesecondpartofthepaper,wewillapplyLUTandTLUTideastoimagehalftoning.TheaimofTLUTwillbetoimitatethecomputation-intensivegoodqualityhalftones.ThesewillbediscussedinSectionsV-VII.Preliminaryversionsofthispaperwerepresentedin[10]and[11].
II.ReviewofLUTinversehalftoning
LUTinversehalftoningmethoddoesnotinvolveanylinearfilteringatallanditdoesnotassumeanyimagemodel.Letusdefineacollectionofpixelsintheneighborhoodofaspecificpixelasatemplateofthepixel.Todeterminetheinversehalftonevalueataspecificpixel,thealgorithmlooksatthepixel’sneighborhoodanddependinguponthedistributionofpixelsinthetemplateofthepixel,itassignsacontonevaluefromaprecomputedLUT.InTableIweshowanexampleofatemplateusedinLUTinversehalftoning.Inthistable“O”denotestheestimatedpixelandallofthepixelswithinthetemplateareusedintheprediction.Thenumberofpixelsusedinthetemplateisrelativelysmall,typicallysixteen.Forasixteenpixeltemplateweneed216=KbytesofLUT,andforanineteenpixeltemplateweneed219=512KbytesofLUT.ThemethodiscompletelyparallelanditdoesnotrequireanycomputationbecauseitisanLUTbasedalgorithm.Thismakesitfasterthanthepreviouslyknownmethods.Moreover,themethodprovidesverygoodimagequality,oftenevenbetterthanthemethodin[4]aswehavedemonstratedin[7].Fig.1showstheinversehalftonedmandrillimageusingthemethodof[4],andFig.2showsthesameusingtheLUTmethodof[7]2.Inbothcasesthestartingpointwasanerrordiffusedhalftoneimage.NoticethattheLUTmethodpreserveshighfrequencyinformationverywell(haironthecheeks).
Sinceinversehalftoningcannotbedonewithoutusingextrapropertiesofimages,weusesampletrainingimagesfor
2Note
thatthetrainingandtestimagesdescribedinSec.IVareusedthroughputthepaper.
SUBMITTEDTOIEEETRANSACTIONSONIMAGEPROCESSING3
Fig.1.Inversehalftoningbyfastiht2(Kiteet.al.)
(PSNR=22.59dB).Thehalftonewasobtainedbyerrordif-fusion.Fig.2.LUTinversehalftoningwith“Rect”template
(PSNR=24.42dB).Thehalftonewasobtainedbyerrordif-fusion.
generatingtheLUT.Inthetrainingphase,sampleimagesandcorrespondinghalftoneversionsareusedtoobtaintheLUT.Thetrainingphaseissimple,andhastobedoneonlyonceforaspecifichalftonemethod.
NonexistentPatterns:TheLUTsizescanbecomebiggerifahighqualityinversehalftoneisrequired.EachbinarycombinationofpixelsinthetemplatecorrespondstooneentryintheLUT.Butmanyofthesecombinationshardlyariseinpractice,andarereferredtoasnonexistentpatterns.Forexample,inerrordiffusionwithaeighteenpixelneighborhood,wefoundthat22.75%ofthepatternsarenonexistent.Forclustereddotordereddither78.22%arenonexistent,andforBayer’sdisperseddotordereddithering86.22%.Inthenextsectionweshowhowtotakeadvantageofnonexistentpatternsandreducestorage.
III.TreestructuredLUT(TLUT)inversehalftoning
Inthissection,weshowhowtotakeadvantageofnonexistentpatternsandreducestorage.Byusingatreestructure,thestoragerequirementscanbeafractionofitsLUTequivalent.Inthissense,thetreestructurecanberegardedasa‘compressed’versionoftheLUT.FirstasmalltemplateLUTwillbeusedtogetacrudeinversehalftoneforeachpixel.Thenthisvaluewillberefinedbyadaptivelyaddingpixelstothetemplatedependingonthecontext.Theseadaptivepixelswillbeplacedinatreestructure.LiketheLUTmethod,treestructureinversehalftoningdoesnotinvolveanyfiltering,buttherewillbemorestepsininversehalftoningasoutlinedinSec.III-B.
InSec.III-Aweshowthetypeoftreestructureweareusingininversehalftoning.ThenwewilldescribeourinversehalftoningwithtreestructureinSec.III-B.DesignoftreestructureisdiscussedinSec.III-CwhereasassigningthecontonevaluestotreeleavesisoutlinedinSec.III-D.Thentheexperimentalresultsonerrordiffusedhalftoneimages
SUBMITTEDTOIEEETRANSACTIONSONIMAGEPROCESSING4
xxxxxxxxxxOxxxxxTABLEI
Anexampleoftemplateusedininverse
halftoning
(-3,0)(2,1)(4,-1)(3,1)(2,-1)......(2,-1)(2,0)(3,-1)(2,-1)Pixel coordinates.Contone value for inverse halftoning;halftone value for halftoning.Fig.3.Generictreestructuresusedininversehalftoningandhalftoning.
A.TreeStructure
Letusdenotethesizeoftheinitialtemplateusedasa(thisistypicallysmall,e.g.,a=9).Wewilldefine2abinarytreescorrespondingtothedifferentpatternsinthetemplate.Eachtreenodeiseithersplitfurtheroritisaleaf.TreenodesaresplitsothatthecontonevaluesofLUTobtainedwithinitialtemplatecanberefined.Ifanodeissplit,thenthelocationofadditionalpixel,(i,j),isstoredinthenodeandtwomorenodesattachedtothisnodeasitschildren.Ifatreenodeisatreeleaf,thenacontonevalueisstoredinthenode.
InFig3wehaveillustratedagenerictreestructure.Theuppertreenodesarethetreeroots.Theblackshadednodesarethetreeleavesandtheystoreacontonevaluein[0,255].Unshadedtreenodeshavetwochildrenandtheystorethelocationoftheadditionalpixelasshown.
Inordertostorethetree,weneedtorecordthetreestructure,additionalpixellocations,andcontonevaluesstoredinthetreeleaves.Letusassumethatwehave2atreesandbtreeleaves.Thenitcanbeshownthatweneedbbytestostorethecontonevaluesinthetreeleaves,(2b−2a)/8bytestostorethetreestructureand(b−2a)memoryunitstostorethelocationsofadditionalpixels(SeeAppendixIfordetails).Memoryunitusuallycorrespondsto1or2bytes.Thestoragerequirementofmemoryunitwilldependonthenumberofpossiblelocationsforadditionalpixels.
SUBMITTEDTOIEEETRANSACTIONSONIMAGEPROCESSING5
B.InverseHalftoningwithTreeStructure
Intree-structuredinversehalftoning,wetrytofindatreeleafforeachpixelinthehalftoneimage.Afterfindingthetreeleaf,thecontonevaluestoredinthetreeleafwillbeassignedastheinversehalftonevalueofthepixel.Tofindthecorrespondingtreeleafforeachhalftonepixellocationwewilldothefollowing:
1.FirstlookatthepatterninsidetheinitialtemplateBofsizea.Eachpatternwillcorrespondtooneofthebinarytrees.Therootofthecorrespondingtreeisdeclaredasthecurrentnode.
2.Eachnodeiseithersplitintotwonodesoritisaleaf.Ifanodeisaleaf,thentheaveragecontonevalueisstoredinthenode.Thisvalueisassignedastheinversehalftonevalueatthepixel.
3.Ifanodeissplitintotwo,thenthelocation(i,j)oftheadditionalpixelisstoredinthenode.Getthehalftonevalueofthepixelwhichis(i,j)awayfromthecurrentpixel.Ifthisvalueis0(1),thentheleft(right)nodeisassignedasthecurrentnode.Thengotostep2.C.Designingthetreestructure
First,theinitialtemplateBofsizeashouldbechosen.ThepixelsinBarechosenfromaneighborhoodNLofthecurrentpixel.HereNLdenotesaneighborhoodofsizeL:
NL={(i,j)|i∈{−L,...,L}andj∈{−L,...,L}}.
Thus,B={(i0,j0),(i1,j1),...,(ia−1,ja−1)}.Thistemplatecanbefoundusingthealgorithmoutlinedin[8]andasummaryofthisalgorithmisgiveninAppendixII.Then,eachpatterninthistemplatewillcorrespondtooneofthebinarytrees.Thesewillalsocorrespondtotheinitial2atreeleaves.Startingfromthistreestructure,wewilladdnewtreeleavesincrementally.Thisisdoneuntilwegetsufficientnumberoftreeleavesorwearesatisfiedwiththeinversehalftonequality.InthisprocessthecostfunctionwillbetheMSEofaspecifictreestructure.Bythis,wemeanthemeansquarederrorbetweentheinversehalftonedimageswiththespecifictreestructureandtheoriginalimagesinthetrainingset.FindingtheMSEofatreerequiresthecontonevaluesinthetreeleaves.Givenanytree,thereisanoptimalwayinMSEsensetoassigncontonevaluestoitsleaves.InSec.3-Dweexplainhowthesearecalculated.Herewegiveanalgorithmtoaddthe‘best’treeleafinMSEsensetoatreestructure.
1.ForeachleaftandforeachpixelpinNLdothefollowing:Assumethattheleaftissplitintotwonodeswiththeadditionalpixelp.CalculatetheMSEofthistreestructure(MSEt,p).2.FindtheleaftoandadditionalpixelposuchthatMSEto,poisminimum.
3.Updatethetreestructurebysplittingthetreeleaftowiththeadditionalpixelpo.
Herethealgorithmiswrittenasaboveforsimplicity.Howeverthealgorithmcanbeimprovedforcomputationalefficiency.AnothersimplificationwouldbetosplitKleavesratherthanoneleafaftercalculatingtheMSEforeachtreeleafinthetreestructure.Then,thesecondandthirdstepsoftheabovealgorithmshouldbemodifiedasfollows:2’.FindKleavesto,1,...,to,Kandpo,1,...,po,KsuchthatMSEto,1,po,1,...MSEto,K,po,KarethesmallestKnumbers
SUBMITTEDTOIEEETRANSACTIONSONIMAGEPROCESSING6
xxxxxxx0xxxxxTABLEII
InitialtemplateTFS13usedintreestructureLUTinversehalftoningofFloyd-SteinbergErrorDiffused
Images.
3’.Updatethetreestructurebysplittingthetreeleavesto,1,...,to,Kwiththeadditionalpixelspo,1,...,po,Kcorre-spondingly.
D.Assigningcontonevaluestotreeleaves
Wehavetofindthecontonevaluesforeachtreeleafgivenatreestructureandadditionalpixellocations.Afterwards,thesecontonevalueswillbeassignedasinversehalftonevaluesinthetreestructureinversehalftoningalgorithm(Sec.3-B).Wewillusetrainingimagesinthisprocess,i.e.,halftoneimagesandcorrespondingcontoneimages.FirstwefindthetreeleavesforeachpixelinthetrainingsetusingtheinversehalftoningalgorithminSec.3-B.LetusdenotethesetofcontonevaluesofpixelswhichhavethesametreeleaftasStwhereatisthesizeofSt.ThusSt={x1,x2,...,xat}.Then
at
xi/at).theclosestintegertothemeanvalueofStwillbeassignedasthecontonevalueoftheleaf(ct):ct=int(i=1
IV.ExperimentalResultsforTLUTinversehalftoning
WewillfirstapplytheTLUTinversehalftoningalgorithmonerrordiffusedhalftonestodemonstratetheperformanceofouralgorithm.Then,TLUTwillbeappliedonclustereddotorderedditheranddisperseddotorderedditherhalftones.Notethat,ourinversehalftoningalgorithmcanbeappliedtoanytypeofhalftoningalgorithm.A.TLUTinversehalftoningoferrordiffusedimages
Firstwechoosetheinitialtemplateusingthealgorithmgivenin[9].Wehaveincluded30imagesinourtrainingsetandanother30imagesinourtestset.Inthesesets,wehavebothincludedsmoothandnon-smoothimagesandtheseimagescanbefoundat[21].Thetemplate,calledTFS13,forFloydSteinbergerrordiffusedimagesisshowninTableII.Inthetable‘0’denotesthecurrentpixel,andthe‘x’denotestheotherpixelsinthetemplate.Wehavechosenthebiggesttemplatesuchthattherearenononexistentpatternsinthehalftonetrainingimages.ThenthenodesareaddedincrementallyusingthealgorithmsummarizedinSec.3-C.Forthetreedesignalgorithm,wehavechosenN3asourneighborhood3.NotethatthroughoutthepaperweusedtheimprovedtreedesignalgorithmforcomputationalefficiencywithK=256(KisdefinedinSec.III-C).
InTableIV,wehavesummarizedtheperformanceoftreestructureinversehalftoning.Thetreesuseddifferonlyinthenumberoftreeleaves.TheinitialtemplateforallofthesetreestructuresisTFS13andithasninepixelsin
3A
listofacronymsusedinthispaperissummarizedinTableIII.
SUBMITTEDTOIEEETRANSACTIONSONIMAGEPROCESSING7
NL
TFS13
FS1,FS2,FS3,FS4,FS5TCD9
CD1,CD2,CD3,CD4,CD5TOD8
OD1,OD2,OD3NeighborhoodaroundthecurrentpixelInitialtemplateusedforFSerrordiffusedimages
DifferenttreesusedinTLUTinversehalftoningofFSerrordiffusedimagesInitialtemplateusedforclustereddotorderedditheredimages
DifferenttreesusedinTLUTinversehalftoningofclustereddotorderedditheredimagesInitialtemplateusedfordisperseddotorderedditheredimages
DifferenttreesusedinTLUTinversehalftoningofdisperseddotorderedditheredimages
TABLEIII
Acronymsusedinthepaper.
Tree#add.leavesStorage(tree)Storage(contone)Storage(location)Storage(total)AveragePSNRLenaFS120481536B10240B2048B13824B26.dB30.33dBFS240962048B12288B4096B18432B26.93dB30.73dBFS361442560B14336B6144B23040B27.01dB30.84dBFS481923072B16384B8192B278B27.05dB30.91dBFS5102403584B18432B10240B32256B27.08dB30.95dBTABLEIV
ComparisonofDifferentTreeStructuresusedin
TLUTinversehalftoning.
thetemplate.Thusalltreestructureshave213=8096initialtreeleaves.Thenumberofadditionaltreeleavescanbeseeninthesecondrow.Storagerequirementsforstoringthetreestructure,thecontonevaluesandtheadditionalpixellocationsarealsoshowninthird,fourthandfifthrowrespectivelyintermsofbytes.Thetotalstoragerequirementofatreeisthenreportedinthesixthrow.Intheseventhrow,theaveragePSNRvalueoftheinversehalftoneimagesinthetestset(withrespecttotheoriginalcontoneimages)areshown.WealsoaddedthePSNRvaluesofTLUTinversehalftonedLenaimages.NotethatLenaimageisnotinthetrainingset.
SimilarlyinTableVwehavesummarizedtheinversehalftoneimagequality,andstoragerequirementsof16and19sizeLUTinversehalftoning[8],andtheinversehalftoningalgorithm‘fastiht2’reportedin[4].Inthelastrow,theaveragePSNRvalueoftheinversehalftoneimagesinthetestsetarereported.Inthetable‘Rect’denotesaspecific16pixeltemplateand‘19pels’denotesaspecific19pixeltemplateasdefinedin[8].
FromthesetablesitcanbeseenthattheimagequalityachievedwithtreestructureFS1isbetterthantheimagequalityachievedwithLUThalftoningusingthe‘19pels’template.Notethatthelatterneeds512KBforstoragewhereasFS1needslessthan13.5KB.Also,theinversehalftoneimagequalityachievedwithFS1isbetterthanfastiht2method.Besides,theinversehalftonequalityissuperiorformandrillimagewhichhasalothighfrequencycontent.ImagequalityMethodTemplateStorageAveragePSNRLUTMethodRect19pelsKB512KB26.50dB26.60dBfastiht2(Kite[4])-25.94dBTABLEV
ComparisonofDifferentTemplatesusedinLUT
inversehalftoning.
SUBMITTEDTOIEEETRANSACTIONSONIMAGEPROCESSING8
Fig.4.ResultofLUTinversehalftoningwith“Rect”tem-plate.
Fig.5.ResultofTreestructureinversehalftoningwithFS2.
forFS1canbeincreasedbyaddingmoretreeleavestoFS1.Biggertreeswithstoragerequirementsarereportedinsecond,thirdandfourthcolumnsoftableIV.Eventhough,theaveragePSNRoftheTLUTinversehalftonedimagesinthetestsetincreases,visually,theimagequalityremainsalmostthesame.ForvisualcomparisonwenowshowtheinversehalftoneimagesforLenaimagesinFig.4andFig.5.Thesefigurescanbeseenbetteratthewebsite[21].InFig.4theinversehalftoneisobtainedwithLUTinversehalftoningusing‘Rect’template.InFig.5,thetreestructuredinversehalftoningwithtreeFS2isshown.
SUBMITTEDTOIEEETRANSACTIONSONIMAGEPROCESSING9
B.TLUTinversehalftoningofclustereddotorderedditheredimages
WehavedesignedandtrainedTLUTtreeson3×6clustereddotorderedditherhalftones[5].Theinitialtemplateisfoundusingthetemplateselectionalgorithmgivenin[8]andthistemplateisshowninTableVI(TCD9).InTableVIIwehavelistedTLUTtreeswiththesameTCD9initialtemplatebutwithdifferentnumberoftreeleaves4.Thus,allthesetreestructureshave29=512initialtreeleaves.Forthetreedesignalgorithm,wehavechosenN3asourneighborhood.Inthetable,thenumberoftreeleavesincreasesfromlefttorightandaveragePSNRdenotestheaveragePSNRoftheinversehalftonedimagesinthetestset.TheinversehalftoneimagesobtainedusingCD1treestructurehaveapparentperiodicstructuresbecausewedidnothaveenoughadaptivepixels.IftreestructureCD3isusedinTLUT,mostoftheperiodicstructuresaresuppressedandtheinversehalftonesarefreefromblockiness.IfweaddmoretreeleavestotreestructureCD3theaveragePSNRoftheinversehalftonedimagesinthetestsetincreases.However,theinversehalftonequalitydoesnotchangemuchvisuallywhenweaddmoretreeleavestotreestructureCD3.InFig.6weshowtheTLUTinversehalftonedBoat400imagewithCD3tree.ForcomparisonweshowtwostepLUTinversehalftonedBoat400imagewith19pixeltemplateinFig.7[9].TwostepLUTinversehalftoningalgorithmisLUTinversehalftoningalgorithmfollowedby3×3medianfilteringtosupresstheperiodicstructures.Visually,theTLUTresultisbetter:NoticethatthereisanaturaltextureinthewaterinTLUTresultwhereasthewaterdoesnotlooknaturalinsomepartsintheLUTexample.)Also,TLUTneedsonly14KBwhereasLUTneeds512KB.ForcomparisoninFig.8(PSNR=25.86dB)weshowtheinversehalftonedimageswithalgorithmIIin[5].IfthisiscomparedwiththeimageinFig.6,weseethattheTLUTinversehalftonequalityisbetterthantheimagequalityoftheresultofalgoritmIIin[5].
TheimpulsivenoisewhichoccurswhenasmallertreeisusedcanberemovedbymedianfilteringifwewanttoreducethestoragerequirementofTLUTinversehalftoning.Weused3×3medianfilteringtosuppressit.LetuscallthefollowingalgorithmastwostepTLUTinversehalftoning:Givenahalftoneimage,firstTLUTinversehalftonetheimageandthenapplymedianfilteringtotheresult.TheresultsoftwostepTLUTinversehalftoningaregiveninTableVIII.WefoundoutthatvisualqualityoftwostepTLUTinversehalftoningwithtreestructureCD2isthesameasthevisualqualityoftwostepTLUTinversehalftoningwithtreestructureCD3.Thusthestoragerequirementcanbedecreasedto9.56KB.
C.TLUTinversehalftoningofdisperseddotorderedditheredimages
Here,wetrainedourTLUTtreesondisperseddotorderedditheredwith8×8Bayer’smatrix.Againtheinitialtemplateisfoundusingthetemplateselectionalgorithmgivenin[8]andthistemplateisshowninTableIX(TOD8).WehavelistedTLUTtreeswiththesameTOD8initialtemplatebutwithdifferentnumberoftreeleavesinTableX.Inthistable,thenumberoftreeleavesincreasesfromlefttoright.N5neighborhoodisusedindesigningthetrees.WehaveobservedperiodicstructuresintheTLUTinversehalftoneswhenatreestructuresmallerthanOD3isused.WehavesuppressedtheperiodicstructureswithtreestructureOD3.WehaveshowntheTLUTinversehalftonedBoat400
4Note
thatthePSNRvaluesofinversehalftonedclustereddotorderedditherimagesaresmallerthanthePSNRvaluesofinversehalftoned
SUBMITTEDTOIEEETRANSACTIONSONIMAGEPROCESSING10
xxxxxTABLEVI
InitialtemplateTCD9usedintreestructureLUTinversehalftoningofclustereddotordereddithered
images.
x
0xxTreeadditional#ofleavesStorage(tree)Storage(contone)Storage(location)Storage(total)AveragePSNRBoat400CD12048576B2560B2048B5184B25.26dB26.72dBCD240961088B46084096B9792B25.54dB26.99dBCD361441600B6656B6144B14400B25.67dBdB27.19dBCD481922112B8704B8192B19008B25.76dB27.26dBCD5102402624B10752B10240B23616B25.82dB27.33dB
TABLEVII
ComparisonofDifferentTreeStructuresforTLUTinversehalftoningofclustereddot
orderedditheredimages.
TreeAveragePSNRBoat400CD123.82dB27.22dBCD224.06dB27.41dBCD324.17dB27.54dBCD424.22dB27.58dBCD524.26dB27.dB
TABLEVIII
ComparisonofDifferentTreeStructuresfortwo-stepTLUTinversehalftoningofclustered
dotorderedditheredimages.
Fig.6.ResultofTLUTinversehalftoneofclustereddot
orderedditheredBoat400imagewithCD3.
SUBMITTEDTOIEEETRANSACTIONSONIMAGEPROCESSING11
Fig.7.TwostepLUTinversehalftoning
with“19opt”template.ThehalftonewasaClusteredDotOrderedDitherImage(PSNR=26.73dB).
Fig.8.InversehalftonedboatimagewithAl-gorithmIIin[5].
imagewithOD3treeinFig.9.NoticethatLUTinversehalftoningcouldnotsuppresstheeseperiodicstructures[9].
V.LUTandTLUTImageHalftoning
Theaimofhalftoningistherenditionofgray-scaleimagesonbileveldevices.Themostcommonalgorithmsforhalftoningaredisperseddotorderedditheranderrordiffusion.Indisperseddotorderedditheracontinuous-toneimageisthresholdedwithaspatiallyperiodicscreenwhereasinerrordiffusionhalftoning,theerroris‘diffused’totheunprocessedneighborpoints[16].
Thecomplexitiesofthealgorithmsandtheresultingimagequalityaredifferent.Disperseddotorderedditherrequiresonlypointwisecomparisons,anditisaparallelmethod.Buttheresultinghalftonessufferfromperiodicpatterns.Error
SUBMITTEDTOIEEETRANSACTIONSONIMAGEPROCESSING12
xxxx0xxxTABLEIX
InitialtemplateTOD8usedintreestructureLUTinversehalftoningofdisperseddotordereddithered
images.
Treeadditional#ofleavesStorage(tree)Storage(contone)Storage(location)Storage(total)AveragePSNRBoat400OD12048544B2304B2304B5152B24.48dB27.49dBOD241961056B4352B4608B10016B24.62dB27.62dBOD361441568B00B6912B14880B24.66dB27.65dBTABLEX
ComparisonofDifferentTreeStructuresforTLUTinversehalftoningof8×8disperseddot
orderedditheredimages.
diffusedhalftonesdonotsufferfromperiodicityandofferbluenoisecharacteristic[16]whichisfoundtobedesirable.Themaindrawbackisthaterrordiffusionisinherentlyserial,anditrequiressomecomputationinthediffusionprocess.Thebluenoisemaskisanotherwaytogethalftonequalitysimilartoerrordiffusion[12].Thedisadvantageofbluenoisemasksisthattheresultinghalftonesdonothaveenhancementliketheerrordiffusioninherentlyhas.
Here,weintroduceLUTbasedhalftoningandTLUTbasedhalftoningmethods.PixelsfromacausalneighborhoodandthecontonevalueofthecurrentpixelwillbeincludedintheLUT.TheLUThalftoningwillrequirenoarithmeticoperationsotherthanmemoryaccess.Foranyhalftoningmethod,asamplesetofimagesandhalftonesoftheseimageswillbeusedtoconstructtheLUT.Eventhoughtree-structureLUT(TLUT)halftoningismorecomplexthanLUThalftoningitproducesbetterhalftonesanditrequiresmuchlessstoragethanLUThalftoning.Wewilldemonstratehowerrordiffusioncharacteristicscanbeachievedwiththismethod.
Therearemorecomputation-intensivehalftoningmethodslikeDirectBinarySearch(DBS)[14]whichgivethebesthalftonequality.Thesealgorithmsserveasexcellentbenchmarks,butarenotcommonlyused.WhenTLUTistrainedonDBS-likeimages,thehalftonequalitywillbeinbetweentheerrordiffusionqualityandDBSquality.Moreover,theTLUThalftonequalitywillgetbetterwhenthesizeofTLUTincreases.
VI.LUTHalftoning
Wewillprocesspixelsonebyoneinraster-scanorder.Inordertodecidethehalftonevalueatachosencell(orpixellocation),wewillusethehalftonevaluesalreadydecidedinacarefullyselectedtemplateorneighborhoodofthechosencellandthecontonevalueofthechosenpixel.Thetemplatedesignphaseismerelyaprocessofdecidingwhichneighboringcellsshouldbeinvolvedintheprediction.WeshowasampletemplateinTableXI.Theletter“0”denotes
SUBMITTEDTOIEEETRANSACTIONSONIMAGEPROCESSING13
Fig.9.ResultofTLUTinversehalftoneofdisperseddot
orderedditheredBoat400imagewithOD3.
TABLEXI
LUTtemplateusedinhalftoning.
131015117593162O148412thecellwhosehalftonevalueisbeingdecidedandothernumbersdenotethecellsinthetemplate.Thetemplateselectionalgorithmwillbedescribedlaterinthissection.
LetusassumethatthereareNpixels(excludingthepixelbeingpredicted)intheneighborhoodandtheyareorderedinaspecificway.Letusalsocallthehalftonevaluesofpixelsasp0,p1,...,pN−1andthecontonevalueofthepixelbeingpredictedasc.Notethatthereare2N28differentpatternssincepi∈{0,1}fori=0,1,...,N−1andc∈{0,28−1}.Sincethehalftoneimageisabilevelimage,ourLUTshouldreturnabinaryvalueforeachpattern(p0p1...pN−1c):T(p0p1...pN−1c).A.DesignofLUT
InthedesignofLUT,weneedtrainingimagesandcorrespondinghalftoneimages.Thus,weselectasetofimagesandhalftonetheseimageswithanyhalftoningalgorithmofourchoice.Wewillfirstobtaintheexpectedhalftonevalueforeachpattern.ThenthishalftonevaluewillbeassignedtothecorrespondingLUTpositionforthatpattern.Letusdenotethenumberofoccurrencesofpattern(p0p1...pN−1c)inthesamplehalftoneimagesasKp0p1...pN−1candcorrespondinghalftonevaluesas
hp0p1...pN−1c,i
IfKp
p...p
c
fori=0,1,...,Kp0p1...pN−1c−1.
>0,theLUThalftonevalueforthepattern(p0p1...pN−1c)willbetheclosestquantizationpointtothe
SUBMITTEDTOIEEETRANSACTIONSONIMAGEPROCESSING14
meanofthecorrespondinghalftonevaluesis,i.e.,
T(p0p1...pN−1c)=
where
mp0p1...pN−1c=
B.Nonexistentpatternestimation
IfKp0p1...pN−1c=0,thenthepattern(p0p1...pN−1c)doesnotexist.Inthiscasethehalftonevalueshouldbeestimatedinadifferentway.AsimilarproblemarisesinLUTinversehalftoningaswell,andthreemethodsareproposedin[7]forthis.Oneofthesecalledthebestlinearestimator,modifiedforLUThalftoning,worksasfollows:Letusnumberallthepatternswhichexistinthesamplehalftoneimagesas(pi,0pi,1...pi,N−1ci)fori=0,1,...,M−1whereMisthenumberofexistingpatterns.LetA(i,j)=pi,jandb(i)=T(pi,0pi,1...pi,N−1ci)fori=0,1,...,M−1,j=0,1,...,N−1.AlsoletA(i,N)=cifori=0,1,...,M−1.Wearelookingforanestimateofthehalftonevalueofthenonexistentpatternof(p0p1...pN−1c)inthefollowingform
y=[p0p1...pN−1c][x0x1...xN−1xN].
x
T
1ifmp0p1...pN−1c≥0.50ifmp0p1...pN−1c<0.5
hp0p1...pN−1c,i
Kp0p1...pN−1c−1
i=0
Kp0p1...pN−1c
.
ThebestlinearestimatorwillbetheleastsquaressolutiontotheoverdeterminedsystemofequationsAx=b.Thesolutionis
x=(ATA)
−1
ATb.
Thenforeachnonexistentpattern(p0p1...pN−1c),weobtainthehalftonevalueasfollows:
0,ify<0.5
T(p0p1...pN−1c)=
1,ify≥0.5C.TemplateSelection
WehaveshownhowtodesigntheLUTforagiventemplate.ThenextquestionishowwecanchoosethebesttemplateforLUThalftoning.WehaveproposedamethodfortemplateselectioninLUTinversehalftoningin[8].HerewewillmodifythatalgorithmforLUThalftoning.
Assumethatthenumberofpixelstobeusedinthetemplateisfixed.OuraimwillbetochoosethebesttemplateofsizeN.Wewillsimplifythetemplateselectionproblembyrestrictingthepixelstobeinafixedcausalneighborhood.WewilldefineourneighborhoodasNL={(i,j)|i∈{−L,...,0},j∈{−L,...,L}}∪{(0,j)|j∈{−L,...,−1}}.Letuscallthepixelwhosehalf–tonevalueisbeingestimatedasthecurrentpixel.
Herewegivearecursivealgorithmtochoosethetemplate.LetusdenoteatemplatehavingapixelsasTa.AssumethatwehavePimageswhichhavesizesx1×y1,x2×y2,...,xP×yPinourtrainingset.WewillhavebothcontinuoustoneimagesDl(n1,n2)andcorrespondinghalftoneimagesHl(n1,n2)forl=1,2,...,Pinourtrainingsetwhere(n1,n2)denotesthepixellocationintheimages.
NowletusdefinetheerrorintheLUThalftoneimagescomparedtoLUTimagesforagiventemplateTasfollows5:
5Note
that,abettererrormeasurewouldbetheMSEoftheHVSfilterederrorbetweenthehalftones.Howeverthistopicisleftforfurther
SUBMITTEDTOIEEETRANSACTIONSONIMAGEPROCESSING15
Fig.10.GoldhillhalftonedwithFSerrordiffusion.
ET(H,H)=
T
ylxlPl=1i=1j=1
lT(i,j))(Hl(i,j)−H
2
TisobtainedusingLUThalftoningwithtemplateT.Wecansummarizeoursize-MtemplateselectionwhereH
algorithmintwosteps:Step0.a=0.Ta=∅.Step1.Define(p,r)asfollows:
(p,r)=
argminT,H).ET(H
(i,j)∈NL
Includethepixel(p,r)inthetemplate:Ta=Ta−1+{(p,r)}.
Step2.IfTeadoesnothaveMelementsgotostep1.Otherwisestop.D.LUTexample
WehavechosenN=15andconstructedourtemplateusingalgorithmgivenintheprevioussection.Thetrainingsetincludedseveralerrordiffusedhalftoneimages(seebelow).ThistemplatewasshowninTableXI.Inthetable,“k”thcell(k>0)denotesthatthecellisaddedtothetemplateinkthstep.
Notethatweneed2N28=223Bits(1MBytes)tostoretheLUT.WehavetrainedourLUTwithimagesusingthefollowingimages:Lena,peppers,greyramp,boat,airplane,Zelda,greyscalerampandtwomoresmoothimages.Thehalftonesoftheseimagesfortrainingareobtainedwitherrordiffusion.Afterwardswehalftonedgoldhillwiththe
SUBMITTEDTOIEEETRANSACTIONSONIMAGEPROCESSING16
Fig.11.GoldhillhalftonedwithLUThalftoning.
designedLUT.Noticethatgoldhillwasnotinthetrainingset.TheresultisshowninFig.11.ForcomparisonweshowGoldhillhalftonedwitherrordiffusioninFig.10.ExceptinregionsofverylowandveryhighgreylevelstheLUThalftoningmethodgivesthesameimagequalityaserrordiffusion.6Noticethat,thestoragerequirementofLUThalftoningisalsohigh.InthenextsectionwewillintroduceTLUThalftoninginordertoovercometheseproblems.
VII.Tree-structureLUThalftoning
Asillustratedabove,LUThalftoninghassomedefectsinregionsofverylowandveryhighgreylevels.Itcanbeseenthatthehalftonepatternforg=
1256hasapproximately16×16periodicity,andLUThalftoningwithatemplateshown
inTableXIcannotcapturethisperiodicity.Becausethistemplatedoesnothaveapixelwhichis16×16pixelsawayfromthehalftonepixelbeingpredicted.Differentcellsshouldbeaddedtocapturedifferenthalftonepatterns.However,thetemplatesizecannotbeincreasedarbitrarilybecauseofstorageproblems.Thisproblemcanbesolvedbyaddingcellsadaptivelytothetemplate.Wewillshowthat“adaptivecells”canbestoredefficientlyinatreestructure.A.Treestructure
Letusdenotethesizeoftheinitialtemplateusedasa(thisistypicallysmall,e.g.,a=11).Wewilldefine2a+8binarytreescorrespondingtothedifferentpatternsinthetemplate.Eachtreenodeiseithersplitfurtheroritisaleaf.TreenodesaresplitsothatthehalftonevaluesofLUTobtainedwithinitialtemplatecanberefined.Ifanodeissplit,thenthelocationofadditionalpixel,(i,j),isstoredinthenodeandtwomorenodesareattachedtothisnodeasitschildren.Ifatreenodeisatreeleaf,thenahalftonevalueisstoredinthenode.
InFig3wehaveillustratedagenerictreestructure.Theuppertreenodesarethetreeroots.Theblackshaded
6The
imagescanbefoundatthewebsite[21]forbetterviewing.
SUBMITTEDTOIEEETRANSACTIONSONIMAGEPROCESSING17
nodesarethetreeleavesandtheystoreahalftonevalue.Unshadedtreenodeshavetwochildrenandalsotheystorethelocationoftheadditionalpixelasshown.
Inordertostorethetree,weneedtorecordthetreestructure,additionalpixellocations,andhalftonevaluesstoredinthetreeleaves.Letusassumethatwehave2a+8treesandbtreeleaves.Thenitcanbeshownthatweneedbbitstostorethehalftonevaluesinthetreeleaves,(2b−2a+8)bitstostorethetreestructureand(b−2a+8)memoryunitstostorethelocationsofadditionalpixels7.Onememoryunitusuallycorrespondsto1or2bytesandthisdependsonthesizeofNLusedinthetreedesignstep.Ingeneralonememoryunitiskbitswherek 1.FirstlookatthepatterninsidetheinitialtemplateTofsizea.Eachdifferentpatternwillcorrespondtooneofthebinarytrees.Therootofthecorrespondingtreeisdeclaredasthecurrentnode. 2.Eachnodeiseithersplitintotwonodesoritisaleaf.Ifanodeisaleaf,thenthehalftonevalueisstoredinthenode.Thisvalueisassignedasthehalftonevalueatthepixel. 3.Ifanodeissplitintotwo,thenthelocation(i,j)oftheadditionalpixelisstoredinthenode.Getthehalftonevalueofthepixelwhichis(i,j)awayfromthecurrentpixel.Ifthisvalueis0(1),thenleft(right)nodeisassignedasthecurrentnode.Thengotostep2.C.Designingthetreestructure First,theinitialtemplateTofsizeashouldbefound.ThepixelsinTarechosenfromaneighborhoodNLofthecurrentpixel.ThistemplatecanbefoundusingthealgorithmoutlinedinSec.VI-C.Then,eachpatterninthistemplatewillcorrespondtooneofthebinarytrees.Thesewillalsocorrespondtotheinitial2a+8treeleaves.Startingfromthistreestructure,wewilladdnewtreeleavesincrementally.Thisisdoneuntilwegetsufficientnumberoftreeleavesorwearesatisfiedwiththehalftonequality.InthisprocessthecostfunctionwillbetheMSEofaspecifictreestructure.Bythis,wemeanthemeansquarederrorbetweentheTLUThalftonedimageswiththespecifictreestructureandthehalftoneimagesinthetrainingset.FindingtheMSEofatreerequiresthehalftonevaluesinthetreeleaves.Givenanytree,thereisanoptimalwaytoassignhalftonevaluestoitsleavesusingthemajorityrule.Herewegiveanalgorithmtoaddthe‘best’treeleaftoatreestructure. 1.ForeachleaftandforeachpixelpinNLdothefollowing:Assumethattheleaftissplitintotwonodeswiththeadditionalpixelp.CalculatetheMSEofthistreestructure(MSEt,p).2.FindtheleaftoandadditionalpixelposuchthatMSEto,poisminimum. 3.Updatethetreestructurebysplittingthetreeleaftowiththeadditionalpixelpo. 7Similar calculationsforstoringthetreeusedininversehalftoningaredoneinAppendixI. SUBMITTEDTOIEEETRANSACTIONSONIMAGEPROCESSING18 Fig.12.GoldhillhalftonedwithTLUThalftoningtrainedonerror diffusedimages. D.Assigninghalftonevaluestotreeleaves Wehavetofindthehalftonevaluesforeachtreeleafgivenatreestructureandadditionalpixellocations.Afterwards,thesehalftonevalueswillbeassignedashalftonevaluesintheTLUThalftoningalgorithm.Wewillusetrainingimagesinthisprocess,i.e.,halftoneimagesandcorrespondingcontoneimages.FirstwefindthetreeleavesforeachpixelinthetrainingsetusingtheTLUThalftoningalgorithminSec.VII-B.LetusdenotethesetofhalftonevaluesofpixelswhichhavethesametreeleaftasStwhereatisthesizeofSt.ThusSt={h1,h2,...,hat}.IftherearemoreonesthanzerosinSt,thenthehalftonevalueoftheleaf(ct)willbeone.Otherwiseitwillbezero. E.TLUTexample WehavechosenourinitialtemplatetoconsistofthefirstelevenelementsofthetemplateshowninTableXI.ThenwehaverefinedthetreeswiththetrainingsetasinSec.VIforLUThalftoningwithN17.Intheresultingtree,wehavea=11,b=2a+8+27310=524288.TheTLUThalftoneimageisshowninFig.12.Asitcanbeseenfromthefigure,theproblemswithveryhighandverylowgreylevelsinLUThalftonedimagesdonotoccurforTLUThalftoningalgorithm(seetheskyintheimage).Thetotalstoragecostisapproximately158KB.NotethatthisismuchlessthanstoragerequirementsofLUThalftoningwhich1MB. WehavealsotrainedTLUTonDBShalftones.ThehalftonesareobtainedbyapplyingfiftystepsofDBSiterationsonFSerrordiffusedhalftones[14].OurinitialtemplateconsistsofthefirstelevenelementsofthetemplateshowninTableXI.TheparametersoftheTLUTwithN17areasfollows:a=11,b=2a+8+32768=557056.TheTLUThalftonedimageforGoldhillisshowninFig.13.Noticethatthequalityofthehalftoneimageisbetterthanerror SUBMITTEDTOIEEETRANSACTIONSONIMAGEPROCESSING19 Fig.13.GoldhillhalftonedwithTLUThalftoningtrainedonDBS Images. diffusedhalftoneimage(especiallyinthesky).ThedotsaremoreuniformlydistributedintheskyinTLUThalftonedimagewhereasartificialwormartifactsintheskycanbenoticedeasilyinerrordiffusedimages.8 VIII.Conclusion Inthefirstpartofthepaper,wediscussedtreestructuredinversehalftoning.Thismethodgivesgoodresults,andthestoragerequirementsaremuchsmallercomparedtoLUTinversehalftoning.Herewehaveappliedouralgorithmtoerrordiffusedhalftones,disperseddotorderedditherhalftonesandclustereddotorderedditherhalftones.Othertypeofhalftones(e.g.,dotdiffusedimages[6])canalsobeinversehalftonedeasily.Inthesecondpartofthepaper,anewLUTbasedhalftoningmethodisdiscussed.Thealgorithmiscapableofproducinggoodqualityhalftones.Torefinethehalftones,wethenproposedtree-structuredLUThalftoning.WehavedemonstratedtheperformanceofouralgorithmbytrainingonerrordiffusedandDBSimages.ThecomplexityofTLUThalftoningishigherthantheerrordiffusionalgorithmbutmuchlowerthantheDBSalgorithm.Correspondingly,thehalftoneimagequalitywilllieinbetweenerrordiffusionandDBS. Appendices I.CalculationofstoragerequirementfortreestructuresusedinTLUTinversehalftoningAssumethatwehave2atreesandbtreeleavesinthetreestructure.Sincethecontonevaluesarestoredinthetreeleavesweneedbbytestostorethecontonevalues.Noticethat,everyadditionofanewpixeltothetreestructure 8The imagescanbefoundatthewebsite[21]forbetterviewing. SUBMITTEDTOIEEETRANSACTIONSONIMAGEPROCESSING20 increasesthenumberoftreeleavesbyone.Sincethetreestructurewithbtreeleavesisobtainedbyaddingadditionalpixelstoaninitialtreewhichcontainsonly2atreeleaves,treestructurecontainsb−2aadditionalpixelsandweneedb−2amemoryunitstostorethelocationsoftheseadditionalpixels. Inordertoexplainhowtostorethetreestructure,letusdefineatreenodestorageroutineasfollows:Inthisroutine,a“1”willbestoredifthetreenodeisaleaf.Ifthetreenodeissplit,thena“0”willbestoredandthiswillbefollowedbyapplyingthetreenodestorageroutinetotherightchildandthentotheleftchild.Thus,ifweapplythetreenodestorageroutinetotherootsof2abinarytreesinaspecificorder,wecanstorethetreestructure.Noticethat,weneedbbitstostorethetreestructurewhenb=2aandeachadditionofanadaptivepixeltothetreestructureincreasesthestoragerequirementby2bits.Thusweneed2b−2abitstostorethetreestructure. II.SummaryofTemplateSelectionAlgorithminLUTinversehalftoning Assumethatthenumberofcellstobeusedinthetemplateisfixed.OuraimwillbetochoosethebesttemplateofsizeM.Wewillsimplifythetemplateselectionproblembyrestrictingthecellsinafixedneighborhood,i.e.,NL.LetuscallthecellwhosecontonevalueispredictedasthecurrentandatemplatehavingaelementsasTea.AssumethatwehavePimageswhichhavesizesx1×y1,x2×y2,...,xP×yPinourtrainingset.WewillhavebothcontinuoustoneimagesDi(n1,n2)andhalftoneimagesHi(n1,n2)fori=1,2,...,Pinourtrainingsetwhere(n1,n2)denotesthecelllocationintheimages.Nowletusdefinethecorrelationbetweentwoimagesets{Dl}and{Fl}asfollows: Cor(D,F)= ylxlPl=1i=1j=1 Pxlyl (Dl(i,j)−mD)(Fl(i,j)−mF) where mD= l=1 i=1j=1 Pl=1xlyl Dl(i,j) andsimilarlyformF.Herewegivetemplateselectionalgorithmisfivesteps:Step0.a=0.Tea=∅. Step1.Letusdefine{Hl,(i,j)}tobetheshiftedversionsofhalftoneimages{Hl}:Hl,(i,j)(m,n)=Hl(m−p,n−r).ThencalculateCor(D,H(i,j))for(i,j)∈NL.Let(p,r)=argmax(i,j)∈NL|Cor(D,H(i,j))|.Includethecellinthetemplate:Tea=Tea−1+{(p,r)}. Step2.Incrementaby1.DesignanLUTtableusingthetemplateTea−1toestimatecontonevalueofacellusingthecellsinthetemplateTea−1.UsethisLUTtabletoestimatethecontoneimages{Di}fromhalftoneimages{Hi}.Letuscalltheestimateimagesas{Dl}. Step3.DesignanLUTtableusingthetemplateTea−1toestimatehalftonevalueofacell(i,j)cellsawayfromthecurrentcell.Inthedesign,majorityvoterulewillbeusedforeachpattern:If1’soccurmorethan0’sinaparticularpatternthen1willbeassignedforthatpattern;otherwise0willbeassigned.Letuscalltheestimatehalftonesasi,(p,r)}.Calculate{Hei,(p,r)}forallthecellswhichareinthefixedneighborhoodbutnotinthetemplate.{He ˆH−He(i,j))|.IncludetheStep4.CalculateCor(D,He(i,j))for(i,j)∈NL.Let(p,r)=argmax(i,j)∈NL|Cor(D−D,cellinthetemplate:Tea=Tea−1+{(p,r)}. Step5.IfTeadoesnothaveMelementsgotostep1. SUBMITTEDTOIEEETRANSACTIONSONIMAGEPROCESSING21 References [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21] M.AnalouiandJ.P.Allebach,“Newresultsonreconstructionofcontinuous-tonefromhalftone,”ICASSP,Vol.3,pp313-316,1992.Z.Fan,“Retrievalofimagesfromdigitalhalftones,”ISCAS,pp313-316,May1992. S.HeinandA.Zakhor,“Halftonetocontinuous-toneconversionoferror-diffusioncodedimages,”IEEETrans.ImageProcessing,vol.4,2,pp208-216,February1995. T.D.Kite,N.Damera-Venkata,B.L.Evans,andA.C.Bovik,“AFast,High-QualityInverseHalftoningAlgorithmforErrorDiffusedHalftones”,IEEETransactionsonImageProcessing,vol.9,no.9,pp.1583-1592,Sep.2000. J.Luo,RicardodeQueiroz,andZhigangFan,“Arobusttechniqueforimagedescreeningbasedonthewavelettransform,”IEEETrands.SignalProcessing,vol.46,pp1179-1184,April1998.M.Me¸seandP.P.Vaidyanathan,“OptimizedHalftoningUsingDotDiffusionandMethodsforInverseHalftoning,”IEEETransactionsonImageProcessing,vol.9,no.4,pp.691-709,April2000. —,“LookUpTable(LUT)InverseHalftoning,”ProceedingsofISCAS,2000. —,“TemplateSelectionforLUTInverseHalftoningandApplicationtoColorHalftones,”ProceedingsofICASSP,2000. —,“Lookuptable(LUT)Methodforinversehalftoning,”,IEEETransactionsonImageProcessing,vol.10,no.10,pp.1566-1578,April2000. —,“Tree-structuredmethodforimprovedLUTinversehalftoning,”,ProceedingsofEUSIPCO,2000.—,“LookUpTableMethodforImageHalftoning,”,ProceedingsofICIP,2000. T.MitsaandK.J.Parker,“DigitalHalftoningTechniqueUsingaBlueNoiseMask,“J.Opt.Soc.Am.A,Vol.9,No.11,pp.1920-1929,November1992. A.N.NetravaliandE.G.Bowen,“Displayofditheredimages,”Proc.SID,vol.22,no.3,pp185-190,1981. M.A.Seldowitz,J.P.Allebach,andD.E.Sweeney,“Synthesisofdigitalhologramsbydirectbinarysearch,”Appl.OptVol.26,pp.2788-2798,1987. M.Y.TingandE.A.Riskin,“Error-diffusedimagecompressionusingabinary-to-gray-scaledecoderandpredictiveprunedtree-structuredvectorquantization,”IEEETrans.ImageProc.,vol.3,pp854-858,1994. R.A.Ulichney,“DitheringwithBlueNoise,“ProceedingsofIEEE,vol.76,no.1,pp.56-79,Jan.1988. R.A.VanderKam,P.A.Chou,andR.M.Gray,“Combinedhalftoningandentropyconstrainedvectorquantization,”inSIDDigestofTechnicalPapers,(Seattle,WA),pp223-226,May1993. P.W.Wong,“Inversehalftoningandkernelestimationforerrordiffusion,”IEEETrans.ImageProcessing,vol.4,4,pp486-498,April1995. P.W.Wong,“Entropyconstrainedhalftoningusingmultipathtreecoding,”IEEETrans.ImageProcessing,vol.6,4,November1997.Z.Xiong,K.RamchandranandM.Orchard,“Inversehalftoningusingwavelets,”ICIP,vol.I,pp569-572,1996.[Online].Available:http://www.systems.caltech.edu/mese/halftone/
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo0.cn 版权所有 湘ICP备2023017654号-2
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务