BasedonthePrincipalStiffnessParameters
QiaoLinandJoelW.Burdick
DivisionofEngineeringandAppliedScience
CaliforniaInstituteofTechnologyPasadena,California91125ElonRimon
DepartmentofMechanicalEngineeringTechnion,IsraelInstituteofTechnology
Haifa32000,Israel
Submittedto
IEEETransactionsonRoboticsandAutomation
Abstract
Thispaperpresentsasystematicapproachtoquantifyingtheeffectivenessofcompliantgraspsandfixturesofanobject.Theapproachisphysicallymo-tivatedandappliestothegraspingof2Dand3Dobjectsbyanynumberoffingers.Wecharacterizetheframe-invariantfeaturesofagrasporfixturestiffnessmatrix.Thenwedefineframe-invariantcharacteristicstiffnesspa-rameters,andprovidephysicalandgeometricinterpretationfortheseparam-eters.Usingaphysicallymeaningfulschemetomakethestiffnessparameterscomparable,wedefineaframe-invariantqualitymeasurecalledthestiffnessqualitymeasure.Thequalitymeasureisthenappliedtotheoptimalgraspingofpolygonalobjectsbythreeandfourfingers.Wedeveloppracticalmethodsforcomputingthegloballyoptimalthreeandfour-fingerarrangement,andprovideexampleswhichshowthattheresultingoptimalgraspsareintuitivelyeffectivegrasps.
1Introduction
Complianceplaysadominantroleinpassivegraspssuchasworkpiecefix-turing,andcanalsobeusedtomodelthefingerforcesinactivegrasps.Thispaperpresentsaframe-invariantqualitymeasureforcompliantgraspsandfixtures,andconsidersitsapplicationtooptimalgraspingandfixturing.Toourknowledge,thequalitymeasurepresentedhereprovidesthefirstsystem-aticapproachtoquantifyingtheeffectivenessofcompliant(asopposedtorigid)graspsandfixtures.Theapproachisframe-invariantandappliestothegraspingorfixturingof2Dand3Dobjectsbyanynumberoffingers.Forthesakeofconvenience,thetermgraspingwillhereafteralsoapplytofixturing.
Compliantgraspshavereceivedmuchattentionintheroboticgraspingliterature.HanafusaandAsada[1]usedalinearspringmodeltofindsta-ble3-fingerplanargrasps.TheirworkwasextendedbyNguyen[2],whousedalinearspringmodeltocomputethestiffnessmatrixofmoregeneralgrasps.HowardandKumar[3]employedamoresophisticatedlinearspringcompliancemodeltostudygraspstability,andshowedhowthecontactge-ometryinfluencesthegraspstability.Instudyingcomplianceinthepresenceoffriction,CutkoskyandWright[4]notedthatstabilityisinfluencedbyinitialloadingaswellascontactgeometry.Whilethelinear-springcom-1
pliancemodelhasbeenwidelyusedbyroboticists,itisnotsupportedbyexperimentsorresultsfromelasticitytheory.RimonandBurdick[5]usedoverlapfunctionstomodelnonlinearcomplianceeffects.Lin,BurdickandRimon[6]usedtheseoverlapfunctionstocomputeandanalyzethegraspstiffnessmatrixforvariouscontactmodels,includingtheexperimentallyandtheoreticallyjustifiedHertzmodel.Whiletheoverlapmodelisusedheretocomputethestiffnessmatrix,ourqualitymeasureisvalidforanycompliancemodel.
Nearlyallpriorworkonquantifyinggraspeffectivenesshasfocusedontherigid-bodymechanicsofthegrasp,whileignoringcomplianceeffects[7].Letthewrench(i.e.forceandtorque)duetoaunitforceappliedbyacontactingfingerbetermedageneratingwrench.LiandSastry[8]suggestedaqualitymeasurebasedonthesmallestsingularvalueofthegraspmatrix,whosecolumnsconsistofthegeneratingwrenches.Kirkpatrick,Mishra,andYap[9]definetheradiusofthemaximalballinscribedintheconvexhullofthegeneratingwrenchesasaqualitymeasure.ThisideaisalsofollowedbyFerrariandCanny[10].However,thesequalitycriteriadependonthechoiceofcoordinateframes—agraspwhichisoptimalunderonechoiceofreferenceframemayfailtobeoptimalunderanother.Severalauthorshavedevisedschemestoavoidthisproblem.MarkenscoffandPapadimitriou[11]minimizetheworst-casefingerforcesneededtobalanceanyexternalunitforceactingatagivenpointoftheobject.MirtichandCanny[12]firstcomputethegraspsthatbestcounteractpureforces,andthenselectamongthesegraspstheonewhichbestresistspuretorques.Someofthecharacteristicsofoptimalfingerarrangementsintheirworkarealsoexhibited,undercertaincircumstances,byouroptimalfingerarrangements.However,theirworkconsidersonlyrigidgrasps,whileweexplicitlyincludecomplianceinouranalysis.Furthermore,weuseacompletelydifferentapproachtodefiningthequalitymeasure—whiletheydefineaqualitymeasureinalexicographicalmannertoavoidcomparingforceswithtorques,wedirectlyaddressthecomparisonofrotationalandtranslationalstiffnesses(explainedbelow).Teichmann[13]suggestsasaqualitymeasurethelargestinscribedball(asdefinedinRef.[9])withrespecttoallchoicesofcoordinateframes.However,hisapproachappliesonlytorigidgrasps,andappearstolackadequatephysicalinterpretation.
Thepotentiallyimportantroleplayedbycomplianceinmanygraspingandfixturingoperationscallsforthedevelopmentofqualitymeasuresthattaketheseeffectsintoconsideration.Todeveloppracticallyusefulandwell-definedqualitymeasures,theeffectsofcompliancemustbeproperlyincor-2
porated,andthedependenceonthechoiceofcoordinateframesmustbeeliminated.Weaddresstheseissuesbyfirstidentifyingtheframe-invariantfeaturesofagrasp’sstiffnessmatrix,intermsofinvariantscalarscalledtheprincipaltranslationalandrotationalstiffnessparameters.TheseparameterswerefirstidentifiedbyPattersonandLipkin[14]usingscrewtheory.Thesameparameterswerediscoveredbyususingadifferentapproach.Wedis-cusstherelationbetweenthetwoapproaches,andprovideanovelgeometricalinterpretationoftheprincipalstiffnessparameters.Oncetheinvariantstiff-nessparametersareidentified,weturntotheissueofhowtoincorporatethetranslationalandrotationalstiffnessparametersinaphysicallymeaningfulwayintoasinglequalitymeasure.Thekeytoourapproachistheconversionoftherotationalstiffnessparametersintoequivalenttranslationalstiffnessesaccordingtoconsiderationsoftheobject’sdeflectionandequivalenceofelas-ticenergy.Basedonthismethod,wedefineastiffnessqualitymeasureintermsoftheprincipalstiffnessparameters.Todemonstratetheusefulnessofthestiffnessqualitymeasure,weconsidertheoptimalgraspingofpolyg-onalobjectsbythreeandfourfingers.Inbothcaseswedeveloppracticalmethodsforcomputingthegloballyoptimalfingerarrangement,andprovideexampleswhichshowthattheresultingoptimalgraspsareindeedintuitivelyeffectivegrasps.
Thepaperisorganizedasfollows.Thenextsectionbrieflyreviewstheconfiguration-spacebasedmodelingofcompliance.Thenweconsidertheframe-invariantfeaturesofagrasp’sstiffnessmatrix,whichleadtothedefini-tionoftheprincipalstiffnessparameters.InSection4wediscussaphysicallymotivatedmethodforcomparingthetranslationalandrotationalstiffnessparameters,andthendefinethestiffnessqualitymeasure.InSection5weconsiderthecomputationofoptimalthreeandfour-fingergraspsofpolyg-onalobjects,andprovideseveralexamplesofthesecomputations.Finally,intheconcludingsectionwesummarizethecontributionsofthisworkanddiscussseveralrelevantissues.
2ModelingComplianceinC-Space
Inthissectionweintroducerelevantterminologyandreviewaconfiguration-spacebasedapproachtomodelingcompliantgrasps.MoredetaileddiscussionofthisapproachcanbefoundinRef.[5].Thiscompliancemodelisusedfortheexamplespresentedinthispaper.However,thequalitymeasurecanbe
3
usedwithanycompliancemodelthatyieldsastiffnessmatrixforthegrasp.AgrasporfixturearrangementconsistsofanobjectBcontactedbykfingersA1,...,Ak.Wemakethefollowingassumptionsonthegraspscon-sideredinthispaper.First,thecontactsarefrictionless,whichallowsforconservativegraspanalysissinceagraspthatisstableintheabsenceoffric-tionwillremainstablewhenfrictionisincluded1Second,thebodieshaveasmoothboundarynearthecontactpoints,asisthecasewithmanyrealisticgrasps.Third,thebodiesareassumedtobequasi-rigid.Thatis,deforma-tionsduetocomplianceeffectsarelocalizedtothevicinityofthecontacts,sothattheoverallmotionofBrelativetoAicanbedescribedusingrigid-bodykinematics.Elasticitytheory[15]suggeststhatthisisanexcellentassump-tionprovidedthebodiesdonotinvolveslenderstructures.Finally,sinceweareinterestedinthemotionofBrelativetoAi,thefingersareassumedtobestationary.
Sincethefingersarestationary,wecanfocusonB’sconfigurationspace.Chooseafixedworldreferenceframe,FW,andanobjectreferenceframe,FB,fixedtoB.AconfigurationofBisspecifiedbytheposition,d∈3,andorientation,R∈SO(3),ofFBrelativetoFW.Theconfigurationspace(orc-space),denotedC,isthesetofallconfigurationsofB.ToparametrizeC,
),wherethe“hat”weparametrizetheorientationmatricesbyR(θ)=exp(θ
suchthatθx=θ×xoperatormapsθ∈3totheskew-symmetricmatrixθ
foranyx∈3.Thus,B’sc-spaceisa6-dimensionalsmoothmanifoldandcanbegivenhybridcoordinatesq=(d,θ)∈3×3,whichmapto(d,R(θ)).ThetangentspacetoCataconfigurationq,denotedTqC,isthesetofalltangentvectors,orvelocitiesofB,atq.Inhybridcoordinates,tangentvectorscanbewrittenasvectorsq˙=(v,ω),wherev∈3isthevelocityoftheoriginofFB,andω∈3istheangularvelocityofFB.Thewrenchspaceatq,denotedTq∗C,isthesetofallwrenches(orcovectors)thatcanpossiblyactonBatq.Awrenchtakestheformw=(f,τ)inhybridcoordinates,wheref∈3istheforceactingonBandτ∈3isthetorque.InthecasewhereBisplanar,c-spacecanbeparameterizedwithq=(d,θ)∈2×,bychoosingthez-axesofFWandFBorthogonaltotheplane.Accordingly,thetangentandwrenchspacesare3-dimensionalwithhybridcoordinatesq˙=(v,ω)∈2×andw=(f,τ)∈2×.
Thehybridparametrizationofc-space(asanyotherparametrization)
dependsonthechoiceofcoordinateframes.Consideranalternativechoice
¯W,displacedfromFWby(dw,Rw),andanotherobjectofworldframe,F
¯B,displacedfromFBby(db,Rb).Aconfigurationwithcoordinatesframe,F
¯WandF¯B.Correspondingly,qwillhavenewcoordinatesq¯withrespecttoF
thetangentandcotangentvectorstransformasfollows[16]:
˙=T−1q,q¯˙
¯=TTw,w
(1)
wherethetransformationmatrix2forthe3Dand2Dcasesaregivenby
RwJR0dbRwR0dbRw
T6×6=andT3×3=,(2)
010Rw
01
respectively.HereJ=(−10),andR0istheorientationofFBrelativetoFWatq0.SincedwandRbdonotappearinT,atranslationofFWorarotationofFBdoesnotaffectthetransformation.
InRef.[5]RimonandBurdickproposedaschemeformodelingnonlin-earcontactcompliancebasedonoverlapfunctionsparametrizedinc-space.Thismodelallowsonetoignorethespecificdetailsofthecontactingsur-facedeformationswhenBandAiarequasi-rigid.Rather,continuouselasticdeformationsarerepresentedbyalumpedparameterthatcharacterizestherelativeapproachofthetwobodies.Abriefreviewofthismodelfollows.Intheabsenceofdeformation,thetwobodiesBandAicontactatasinglepoint.Whenpressedtogether,thecontactingsurfacesdeform.Insteadofcomputingthesesurfacedeformations,considerthebodiesasrigidvolumesthatareallowedtointepenetrate,oroverlap,whenpressedtogether.LetBbeataconfigurationq.ThentheoverlapbetweenBandAi,denotedδi(q),istheminimumamountoftranslationofBwhichwouldseparateitfromAi.Bydefinition,δi(q)=0whenBisdisjointfromAi.Forsufficientlysmallpositiveoverlap,thereisauniquesegment,calledtheoverlapsegment,whoseendpointslieontheboundaryofBandAi,suchthatthelengthofthesegmentequalsδianditsorientationgivesthedirectionoftheseparatingtranslation.ThenetcontactforceisassumedtoactonB’sendpointoftheoverlapsegment,inthedirectionoftheseparatingtranslation.Theforce’smagnitudeisassumedtodependontheoverlapintermsofadifferentiable,monotonicallyincreasingfunctionfi(δi).Thesimplestmodelassumesthatfiisalinearfunctionoftheoverlap:fi(δi)=kiδi,wherethecoefficientkiis
determinedbythematerialandsurfacepropertiesofBandAi.Whilethismodelislinearinδi,itistypicallynotlinearinq,sinceδi(q)isingeneralnonlinearinq.Moresophisticatedcontactmodels,includingthewell-knownHertzmodel,canbeformulatedbychoosingappropriatefunctionsfi(δi).SeeRef.[6]fordetails.
ConsidernowagraspofBataconfigurationq0.Thefingersformanequilibriumgraspif(intheabsenceofanyexternalwrench)thefingerforcesproduceazeronetwrenchonB.Whensubjectedtoanarbitraryexternaldisturbance,Bmaybedisplacedfromq0.ThegraspissaidtobestableifBreturnstoq0aftertheexternaldisturbanceisremoved.AmoreformaldiscussionofstabilitycanbefoundinRef.[5].
TheelasticpotentialenergyofthesystemconsistingoftheobjectBandfingersA1,...,Akis:
Π(q)=
ki=1
δi(q)
fi(δ)dδ.(3)
0
Itcanbeverifiedthatδi(q)isdifferentiablealmosteverywhere,andsmoothat
pointswhereitispositive.Hence,providedthatfiisdifferentiable,Π(q)isadifferentiablefunction.Intheabsenceofadisturbingwrench,anequilibriumgraspatq0ischaracterizedbythecondition:
∇Π(q0)=
ki=1
fi(δi(q0))∇δi(q0)=0,
(4)
wherethegradientvector∇Π(q0)representsthederivativeDΠ(q0).Inthis
equation,thegradientofδiatq0isgivenby[5],
ni
,(5)∇δi(q0)=−
R0ri×niwhereriistheendpointoftheoverlapsegmentontheboundaryofB,expressedinFB;niistheunitnormaltotheboundaryofB,pointingintoB;andR0istheorientationofFBrelativetoFWatq0.Ingeneral,thewrenchgeneratedbyaforceFiactingonBatapointriisgivenbywi=(Fi,(R0ri)×Fi).InourcaseFi=fi(δi(q0))ni,anditfollowsfrom(5)that−fi(δi(q0))∇δi(q0)isthewrenchgeneratedbytheithfinger.Thus,condition(4)assertsthatatanequilibriumgraspthenetwrenchexertedbythefingersmustvanish.
6
WhenBisatanequilibriumgraspconfigurationq0,thegrasp’sstiffnessmatrixisdefinedastheHessian,K=D2Π(q0),oftheelasticpotentialenergyΠ(q)atq0.Since∇Π(q0)=0atanequilibriumgrasp,thebehaviorofΠinthevicinityofq0isdeterminedbyK.IfKispositivedefinite,thenq0isalocalminimumpointofΠ,andthegraspisstable[5].Whilethereexiststablegraspswhosestiffnessmatrixisonlypositivesemi-definite,suchgraspsarenotgenericandcannotadequatelyresistexternaldisturbances.Therefore,inthispaperweonlyconsiderstableequilibriumgraspswithpositivedefinitestiffnessmatrices,andrefertothemsimplyasstablegrasps.
Thestiffnessmatrixofastablegrasphasthefollowingwell-knowninter-pretation.WhentheobjectB,atanequilibriumconfigurationq0,issubjectedtoadisturbingwrenchw∈Tq∗0C,itundergoesadisplacement.Providedthatthedisplacementissufficientlysmall,itcanbeapproximatedbyatangentvectorq˙∈Tq0C.(Inthiscasewemayinterchangeablyusethetermstangentvectoranddisplacement.)Thestiffnessmatrixrelatesanexternalwrenchtotheresultingdisplacementaccordingtotheformulaw=Kq˙.Itsinverse,C=K−1,iscalledthecompliancematrixofthegrasp.Thecompliancematrixisalsopositivedefiniteandestablishestherelationshipq˙=Cw.Tocomputethestiffnessmatrix,wetakethederivativeof∇Π(q)givenin(3)and(4),andobtaintheformula:
k′K=fi(δi(q0))∇δi(q0)∇δi(q0)T+fi(δi(q0))D2δi(q0),
i=1
(6)
wherefi′=dfi/dδi.Inthisformula,whiletheoverlapgradients∇δi(q0)
aregivenby(5),generalformulasfortheoverlapsδi(q0)andtheHessiansD2δi(q0)arederivedinRef.[6].Weobservethatthetwosummandsineq.(6)generallydependontheinitialdeformationsδi(q0).ItisshowninRef.[6]thatwhilebothsummandsdependonthefingerpositionsandcontactnormaldirections,thesecondsummandadditionallydependsonthesurfacecurva-tureatthecontacts3.Wesaythatthefirstsummandaccountsforfirst-ordergeometricaleffects,whilethesecondsummandaccountsforsecond-order,orsurfacecurvature,effects.Ifthefirsttermaloneispositivedefinite,thegraspissaidtobestabletofirst-order.Otherwise,iftheentirematrixKispositivedefinite,thegraspisstabletosecond-order.Therelativecontributionsofthe
firstandsecond-ordereffectstograspstabilityandstiffnessareanalyzedinRef.[6].
Finally,wederivethechange-of-frameformulaforthestiffnessmatrixK.Thequadraticform1
whereq0istheequilibriumgraspconfigurationofB.Inwords,thesubspaceVconsistsofsmalldisplacementsofBwhichcausethefingerstoreactinsuchawaysastogenerateapurenettorqueonthebody.Usingthepartition
−1
ofK,weobtainV={(v,ω):v=−K11K12ω},fromwhichitfollowsthatVcanbeparametrizedintermsofω∈3as4
−1−KK1211
.(9)whereP=V=q˙=Pω:ω∈3
I
LetKVdenotetherestrictionofthestiffnessmatrixKtothesubspaceV.WenowderiveanexpressionforKV.ThestiffnessmatrixKisalinearoperatorfromTq0CtoTq∗0C,andq˙TKq˙isconsequentlyasymmetricbilinearoperatoronTq0C.SincethevectorsinVareparametrizedbyω,wehavefrom(9)thatωTKVω=ωTPTKPωforarbitraryω.ThusKVhastherepresentationKV=
−1T
PTKP=K22−K12K11K12.Inaddition,thepuretorquecorrespondingtoq˙∈Visgivenby(Kq˙)2=KVω.
¯WandF¯B,withoverbarsdenotingobjectsConsidernowtwonewframesF
associatedwiththeseframes.ThelinearoperatorKVhasthefollowinginvarianceproperty.
¯bethesubspacesparametrizedby(9)intheqProposition3.1.LetVandV
¯Vbetherestrictionoftherespectivestiffnessandq¯coordinates.LetKVandK
¯.ThenKVandK¯VobeytheorthogonaltransformationmatrixtoVandV
¯V=RTKVRw,whereRwistherotationmatrixfromFWtoF¯W.Hence,Kw
theeigenvaluesofKVareframe-invariant.
Proof.Usingthestiffnessmatrixtransformationrule(7)andformula(2)
T¯are:K¯11=RwforT,thecomponentsofthestiffnessmatrixKK11Rw,
TT¯12=RT(K12+K11R¯K0db)Rw,andK22=Rw(K22+K12R0db−R0dbK12−w
¯¯¯T¯−1¯R0dbK11R0db)Rw.SubstitutingtheseexpressionsintoKV=K22−K12K11K12
T¯V=RwKVRw.givesK
Dually,therealsoexistsasubspaceofwrenchesonwhichthecompliance
matrixChasaframe-invariantstructure.Thissubspaceisgivenby:
W=w∈Tq∗0C:ω=(Cw)2=0.
Usingthisparametrization,therestrictionofCtothesubspaceW,denoted
−1T
CW,takestheformCW=QTCQ=C11−C12C22C12.Moreover,foranywrenchw∈W,theresultingpure-translationisgivenbyv=(Cw)1=CWf.
¯WandF¯B,wecanshowthefollow-ByagainconsideringtwonewframesF
inginvariancepropertyofCWinawaysimilartotheproofofProposition3.1.¯bethesubspacesparametrizedby(10)inProposition3.2.LetWandW
¯Wbetherestrictionoftherespectivetheqandq¯coordinates.LetCWandC
¯.ThenCWandC¯WobeytheorthogonalcompliancematrixtoWandW
¯W=RTCWRw,whereRwistherotationmatrixfromFWtransformationCw
¯toFW.Hence,theeigenvaluesofCWareframe-invariant.
Propositions3.1and3.2leadtothefollowingobservations.Thebehav-iorofKonthetangentsubspaceVcharacterizestherotationalstiffnessofthegrasp.InresponsetoaninstantaneousdisplacementinV,thereactionwrenchisapuretorque.Inaddition,thereactiontorquevariesbyatmostapurerotationcorrespondingtodifferentchoicesofframes.Similarly,thebehaviorofConthewrenchsubspaceWcharacterizesthetranslationalcom-plianceofthegrasp.AwrenchinWgeneratesapuretranslationofB,whichisthesameuptorotationwithrespecttodifferentframes.Wealsonote
−1
thatbytheinversionformulaofapartitionedmatrix5,CW=K11.Basedontheseobservations,wedefinetheframe-invariantprincipalparametersofKasfollows.
Definition1.LetKbethegraspstiffnessmatrix,andC=K−1thecom-pliancematrix.LetKVandCWbetherestrictionofKandCtothesub-spacesVandW.Thentheprincipalrotationalstiffnessesofthegraspare
−1T
K12),theeigenvaluesµi(i=1,2,3)ofKV(whereKV=K22−K12K11
andtheprincipaltranslationalstiffnessesofthegrasparetheeigenvaluesσi
−1
(i=1,2,3)ofCW=K11.
ThesubspaceWthusconsistsofexternalwrencheswhoseactiononBcausesittomovewithpuretranslation.ThesubspaceWcanbeparametrizedintermsoff∈3as
IW=w=Qf:f∈3.(10)whereQ=−1T
−C22C12
Forplanargraspstheprincipalstiffnessparametershavethefollowingphys-icalinterpretation.Itcanbeshownthateveryplanargrasphasauniquelocationofanobjectframeorigin,givenby
T−1
db=R0JK11K12,
(11)
¯Bisplacedatthislocation,K¯3×3takestheblock-diagonalsuchthatwhenF
¯=diag(RTK11Rw,µ).Thatis,forplanargraspsthetranslationalformKw
androtationaleffectsaredecoupledaboutthisspecialpoint,calledthecen-terofcompliance[2].Theprincipaltranslationalandrotationalstiffnessesofaplanargrasparephysicallythetranslationalandrotationalstiffnessesaboutthecenterofcompliance.For3Dgrasps,thereisgenerallynosuchcenterofcompliance,andthestiffnessmatrixingeneralcannotbemadeblock-diagonal.However,itisimportanttonotethattheprincipalstiffnessparametersarestillwell-definedinthe3Dcase.
3.2ScrewCoordinatesInterpretation
Whilesearchingfora3Danalogofthecenterofcompliance,PattersonandLipkin[14]werethefirsttorecognizetheexistenceoftheprincipalstiffnessparameters.Theyusedscrewcoordinates,andwenowshowthatourprinci-palparametersareequivalenttotheonesderivedbyPattersonandLipkin.Firstwebrieflyreviewthenotionofscrewcoordinates.Thescrewcoordinatesofatangentvectorq˙=(v,ω)consistofascrewaxisandtwoscalarscalledpitchandmagnitude.Ifω=0,theinstantaneousscrewaxisofq˙isthelineparalleltoωwhichpassesthroughthepointv×ω.Thepitchofq˙is(v·ω)/ω2,anditsmagnitudeisω.Ifω=0,thetangentvectorhasinfinitepitch,itsmagnitudeisv,anditsaxisisthelineparalleltovwhichpassesthroughtheorigin.Similarly,thescrewcoordinatesofawrenchw=(f,τ)alsoconsistofanaxis,pitch,andmagnitude.Iff=0,thescrewaxisofthewrenchisthelineparalleltofwhichpassesthroughthepointf×τ.Thepitchofwis(f·τ)/f2,anditsmagnitudeisf.Whenf=0,thewrenchhasinfinitepitch,itsmagnitudeisτ,anditsaxisisthelineparalleltoτwhichpassesthroughtheorigin.Considernowatangentvectorq˙i=Pωi∈V,whereωiisauniteigenvec-torofKVassociatedwiththeeigenvalueµi.Correspondingly,wehaveapuretorquegivenbyτ=(Kq˙i)2=µiωi.Itfollowsfromthisformulathatthetan-gentvectorq˙iinducesapure-torquewrenchofmagnitudeµiaboutthescrew
11
axisofq˙i.Ontheotherhand,forwi=Qfi∈Wwherefiisauniteigenvec-−1−1torofCWassociatedwiththeeigenvalueσi,wehavev=(Cwi)1=σifi.Hence,thewrenchwigeneratesapure-translationdisplacementofmagnitude−1σialongthescrewaxisofwi.Wecannowinterprettheprincipalstiffnessparametersintermsofscrewcoordinates.EverystiffnessmatrixKhassixframe-invariantscrewaxes.AdisplacementofBalongthefirstthreeaxesresultsinapuretorquewhichactsonBalongthesameaxis,ofmagnitudewhichisdeterminedbytherotationalstiffnessµi(i=1,2,3).AwrenchappliedtoBalongtheotherthreeaxesresultsinapuretranslationofBalongthesameaxis,andthemagnitudeofthetranslationisdeterminedbythetranslationalstiffnessσi(i=1,2,3).
3.3GeometricInterpretation
Wenowinterprettheprincipalstiffnessparametersintermsofthegeometryoftwolevel-sets.Thefirstisalevel-setinthetangentspace,definedbyS={q˙∈Tq0C:Φ(q˙)=1},whereΦ(q˙)=1wTCw.Theselevelsetsconsistoftangentvectorsorwrenchesthatinduceunitelasticenergy,andgeometricallyrepresentafive-dimensionalellipsoidalsurfaceinthesix-dimensionaltangentorwrenchspace.Theshapeoftheseellipsoidalsurfacesvariesasdifferentcoordinateframesareused.However,thesesurfacespossessframe-invariantfeatureswhichcorrespondtotheprincipalstiffnessparameters.
Firstconsiderthethelevel-setS.Foreachfixedω,thesubsetofSwiththisparticularvalueofωisdenotedSω.EachsubsetSωisalevel-setofthefunctionΦω(v)Φ(v,ω),inwhichωisafixedparameterandonlyvisavariable.RewritingΦ(v,ω)asafunctionofvonly,gives:
2
Φω(v)=
1
2
ωTKVω.
Henceforeachfixedω,thelevel-setSω={v:Φω(v)=1}isatwo-dimensionalellipsoidalsurfacewithprincipalsemi-axesoflengths((2−ωTKVω)/σi)1/2(i=1,2,3).SincethequadraticformωTKVωisframe-invariant,theselengthsareframe-invariant.Inparticular,whenω=0,theselengthsaresim-plygivenby
withthepure-translationsubspacegivenbyω=0.Thisfeaturecanbeeasilyvisualizedin2Dgraspsaswillbedescribedshortly.
Thelevel-setSpossessesanotherframe-invariantgeometricalfeature.Considertheprojection,denotedSv=0,ofthesetSontothepure-rotationsubspacegivenbyv=0.ItcanbeverifiedthattheboundaryofSv=0(calledthesilhouetteofSalongthedirectionofprojection)istheprojectionofthepointsonSatwhichthevectornormaltoShaszerov-components.ThelattersetisdenotedSn.SinceSisalevel-setofthefunctionΦ(v,ω),Snisdeterminedbythecondition(∇Φ(q˙))1=0.Thisconditionimpliesthat
−1
Sn={(v,ω)∈S:v=−K11K12ω}={(v,ω)∈S:1
ωTKVω1}.
2
Theprojectionsetisathree-dimensionalellipsoidwithprincipalsemi-axesoflength
ττf2hτf2f1(a)
(b)
Figure2:TheelasticenergyellipsoidTinTq∗0C.(a)Tintersectstheτ-axisatthesamepointsτ=±(2µ)1/2.(b)Tisinscribedinthesameellipticcylinder.
¯WandFWandFB,whiletheslantedellipsoidcorrespondstotheframesF
¯B.TheframesFWandFB,aswellasF¯WandF¯B,arecoincident.AsF
canbeobservedfromthefigure,thelengthsoftheprincipalsemi-axesofeachhorizontalcrosssectionofSareframeinvariant.Similarly,theprojec-tionofSontotheω-axisisboundedbytwopoints,whoseω-coordinatesare±
2/µ.
Theframe-invariantfeaturesofthelevelsetT,whichisafive-dimensionalellipsoidalsurfaceinthesix-dimensionalwrenchspace,canbeanalogouslyidentifiedandaresummarizedasfollows.EachsubsetofTwithafixedvalueoff,denotedTf,isatwo-dimensionalellipsoidalsurfacewhoseprin-−1
cipalsemi-axesareequalto(µi(2−fTK11f))1/2(i=1,2,3)andareframe-invariant.Inparticular,whenf=0theprincipalsemi-axesofTfaregiven√by
−1fTK11f1},
2
whichisathree-dimensionalellipsoidwhoseprincipalsemi-axeshaveframe-√invariantlengthsof
inFigure2,wheretheuprightandslantedellipsoidsagaincorrespondto
¯WandF¯B,respectively.WecanseethatthetheframesFWandFW,andF
ellipsoidTintersectstheτ-axis,which√ischosentobetheverticalaxis,attwopointswhoseτ-coordinatesare±
−1T
fKf1.Hence,withrespecttoarbitrarilychosencoordinateframes,112
Tisalwaysinscribedintheverticalcylinderwhosebasesetisthisellipse,asshowninFigure2(b).
Wealsonotethatthevolumeoftheellipsoidsisframe-invariant,sincethevolumeisdeterminedbydet(K)whichisframe-invariant[8].However,wemakenouseofthevolumeinthestiffnessqualitymeasure.
4AFrame-InvariantQualityMeasure
Inthissectionwedefineaframe-invariantqualitymeasureforcompliantgraspsbasedontheprincipalstiffnessparameters.Firstwemustfindawaytomeaningfullycomparethetranslationalandrotationalstiffnessesofagrasp.Ourapproachisbasedonthenotionofobjectdeflectionandtheelasticenergyassociatedwiththisdeflection.Letq˙=α(v,ω)beaninfinitesimaldisplacementofB,whereαisascalar,ω=1ifω=0,andv=1ifω=0.WedefinethedeflectionofBduetothedisplacementq˙asthemaximaldisplacementofanypointinB.SinceBhasboundeddimension,suchamaximaldisplacementalwaysexistsandisindependentofframechoice.Ifω=0,thedeflectionofBissimply|α|.Ifω=0,letρmax(q˙)bethegreatestdistancefromtheinstantaneousscrewaxisassociatedwithq˙toB’sboundarypoints.ThenB’sdeflectionis|α|(ρmax(q˙)2+(v·ω)2)1/2,wherev·ωisthepitchofq˙.Inthecaseofplanargraspsthevectorωisperpendiculartov,andthedeflectionofBis|α|ρmax(q˙),whereρmax(q˙)isthemaximaldistancefromB’sinstantaneouscenterofrotationtoB’sboundarypoints.Wenowconverttherotationalstiffnessestoequivalenttranslationalstiffnessesusingthenotionofobjectdeflection.
Wefirstconsiderplanargrasps,wherethereisonlyasingleprincipalrotationalstiffnessparameter,denotedbyµ.Tocompareµwiththetransla-tionalstiffnessparametersσ1,σ2,wedefineaparameterwhichhastheunitsoftranslationalstiffnessandwhoseequivalencewiththeprincipalrotationalstiffnessµisdeterminedasfollows.AsdiscussedinSection3,µisassociated
15
withrotationsofBaboutthegrasp’scenterofcompliance.CorrespondingtoarotationofBwithmagnitudeαaboutthecenterofcompliance,B’sdeflectionisgivenby|α|ρmax,andtheamountofelasticenergyinducedthedeflectionis1
µα2.Thus,fromtheequation1
obtainthefollowingexpressionfortheequivalentstiffnessµeq:
µ
µeq=
2
2
µα2,we
µiα2,andthedeflectionof
21/2
Bisgivenbyα(ρmax2,whereρmaxi=ρmax(q˙i).Nowimaginei+(vi·ωi))
thesituationwheretheobject,whileattachedtoalinearspring,undergoesapuretranslationbytheamountofthisdeflectioninthedirectionofthespring.Wedefinethestiffnesscoefficientofthelinearspring,denotedµeqi,asequivalenttotheprincipalrotationalstiffnessµi,iftheelasticenergyofthespringduetothetranslationequals1
µαµα2,weobtainthefollowingformulafor2eqi2iµeqi:
µi
µeqi=
2
Definition2.Thestiffnessqualitymeasurefor2Dand3Dcompliantgraspsis:
min{σ1,σ2,µeq}(2Dcase)Q=
min{σmin,µeqmin}(3Dcase)whereσmin=min{σ1,σ2,σ3}andµeqmin=min{µeq1,µeq2,µeq3}.
AsdiscussedinSection3.1,theprincipalstiffnessparameterscharacterizethestiffnessofagivengrasp,andthequalitymeasureQcharacterizestheworst-casestiffnessofthegrasp.Theworst-casestiffnessisdeterminedbyatrade-offbetweentheworst-casetranslationalandrotationalstiffnesses.Theworst-casetranslationalstiffnessischaracterizedbythesmallestprin-cipaltranslationalstiffnessσmin,andtheworst-caserotationalstiffnessbythesmallestequivalentrotationalstiffnessµeqmin(orµeqinthe2Dcase).Incharacterizingtheworst-caserotationalstiffnessbyµeqmin(orµeq),theprincipalrotationalstiffnessparametersaremeaningfullycomparedwiththetranslationalstiffnessparametersbyconsideringequivalenceofelasticenergybasedontheobject’sdeflection.WenotethatQhasthefollowingproperties.First,Qisvalidforgraspsof2Dand3Dobjectsbyanynumberoffingers.Second,thegraspscanbemodeledbyanycompliancemodel,sinceQde-pendsonlyonthestiffnessmatrixofthegrasp.Third,Qisinvariantwithrespecttochangeofworldandobjectreferenceframes.Last,theoptimalgraspofanobjectistheonewhichmaximizesQ,sincethisgrasphasthehighestworst-casestiffness.
5OptimalGraspingofPolygons
Toillustrateourmethodologyanditspossibleutility,weapplythestiffnessqualitymeasuretotheoptimalgraspingofapolygonalobjectBbythreeandfourfingers.Tocomputethestiffnessqualitymeasure,weemploytheoverlapcontactmodelforthecomputationofthegraspstiffnessmatrix.Weusethesimplestmodelwheretheithcontactforceisalinearfunctionoftheoverlap:fi(δi)=kiδi,wherethecoefficientkiisdeterminedbythematerialproperties.Tofurthersimplifythecomputation,weassumediscfingersofradiusr,andallowthefingerstotouchtheobjectonlyalongitsedges.(However,thestiffnessqualitymeasureisvalidforarbitraryfingersatanycontactlocation.)Inthecasesdiscussedbelowwefirstcharacterizethe
17
k-fingerstableequilibriumgrasps,thendiscusstheoptimizationofQoverthesegrasps.
5.1OptimalThree-FingerGrasps
Firstwecharacterize3-fingerstableequilibriumgraspsbythefollowingtwoproperties.Thecontactnormalsmustpositivelyspantheorigin,andthelinescollinearwiththecontactnormalsmustintersectatacommonpoint.Wediscard3-fingerequilibriumgraspswherethethreefingerstouchonlytwoedgesofB,sincewithoutfrictionthesegraspsareonlyneutrallystablewithrespecttotranslationalongtheedges.Thusweconsidertripletsofedges,andfocusonlyonthosetriplets,whicharecalledadmissibleedge-tripletsandsatisfythetwoconditionsforanequilibriumgrasp.Theadmissibleedge-tripletswhichgivestableequilibriumgraspshaveapositivedefinitestiffnessmatrix,andaformulaforthestiffnessmatrixisgiveninthefollowinglemma.Inthelemma,nidenotestheunitnormaltoanedgeofBattheithcontact,pointingintoB.Further,thecircumscribingcircleofatriangleisthecirclewhichpassesthroughthetriangle’svertices(Figure3).
Lemma5.1.LetthreediscfingersofradiusrholdapolygonalobjectBonanedge-tripletinafrictionlessequilibriumgrasp.ChoosetheframesFWandFBtobecoincident,withtheoriginattheconcurrencypointofthelinesofthecontactnormals.Thenthegraspstiffnessmatrixisgivenby
3
K=diag(kininiT,µ)whereµ=fT(2aζ+r).
i=1
(14)
Intheexpressionforµ,fTisthetotalpreloadingfingerforce,givenby3
kiδi(q0);aisradiusofthetriangle’scircumscribingcircle;fT=i=1the33
andζ=(i=1sinαi)/(i=1sinαi)isdeterminedfromthetriangle’sthreeinteriorangles,denotedαi(i=1,2,3).
Thelemma,whoseproofappearsinAppendixA,assertsthatKisblock-diagonalwhenFB’soriginisattheconcurrencypointofthecontactnormals.Sincethispropertyuniquelycharacterizesthecenterofcompliance(eq.(11)),theconcurrencypointisatthegrasp’scenterThus,thetwo3ofcompliance.Teigenvaluesofthe2×2matrixK11=i=1kininiarethetranslationalstiffnessesσ1,σ2,andµistherotationalstiffnessofthegrasp.ForKtobepositivedefinitethethreeparametersmustbepositive.ThesubmatrixK11
18
edge of Bα3edge of BA2circumscribing circleof radius aA3n3n2α1n1A1Sedge of Bα2Figure3:Threefingersonanedgetriplet.
ispositivedefiniteandconstantonagivenadmissibleedge-triplet.Henceσ1andσ2arepositiveconstantsonagivenedge-triplet.Intheparameterµ=fT(2aζ+r),aandrarepositiveconstants,whileζisapositivecon-stantincompressivegraspswherethefingerspushtowardstheconcurrencypoint6.Assumingtheusualcaseofacompressivegrasp,µispositivewhenfTisstrictlypositive.TheconditionfT>0impliesthatthegraspmustbepreloadedforstability.WethereforeassumethatfThasaspecifiedpositivevalueforallpossiblefingerplacements.Thisisareasonableassumption,sinceinpracticeoneoftenwishestocomparedifferentgraspscorrespondingtoacommonpreloadingleveldeterminedbythetaskspecificationsandma-terialstrengthrequirements.Thusµisalsoapositiveconstantonagivenedge-triplet,andallpreloadedequilibriumgraspsonanedge-tripletaresta-ble.
WenowshowthatQ=min{σ1,σ2,µeq}isdeterminedbytheequiva-lentrotationalstiffnessµeq=µ/ρ2max,whereρmaxisthedistancefromtheconcurrencypointtothefarthestvertexofB.Firstweexcludedegenerateedge-tripletsinwhichthethreeedgesarealmostparalleltoeachother.Typi-caledge-tripletsarenon-degenerate,andinspectionofthematrixK11revealsthatitseigenvaluesσ1andσ2areofthesameorderofmagnitudeasthemate-rialconstantki.Wewritethisconditionasσi∼=ki.Accordingto(14),µeq=
3
SubstitutingforfTandtaking(fT(2aζ+r))/ρ2,wheref=Tmaxi=1kiδi(q0).3
thequotientµeq/σi∼=µeq/kigives:µeq/σi∼=(i=1δi(q0))(2aζ+r)/ρ2max.Theparameterζinthequotientsatisfiesζ1/4.Moreover,ρmax,a,andrareofthesameorderofmagnitudeasB’scharacteristicdimension.Hencethevalue3ofthequotientisdominatedbytheratio:µeq/σi∼=(i=1δi(q0))/ρmax≪1,sincethepenetrationδi(q0)isalwaysmuchsmallerthanB’scharacteristicdimension.Itfollowsthatmin{σ1,σ2,µeq}=µeq,andtherefore
Q=fT
2aζ+r
thecenterofthesmallestdiscwhichcontainsB,suchthatthedisc’scenterliesinS.Itcanbeshownthatthisisthepointwherethehalf-linewhichstartsatp0alongtheperpendicularbisectorofthelongestedgefirstintersectstheregionS.ThisscenarioisshowninFigure4(b).
optimalconcurrency pointp0S(a)p0optimalconcurrencypointS(b)Figure4:Optimal3-fingergraspsoftwotriangularobjects,inwhichp0lies(a)insideSand(b)outsideS.
Tocomputethegloballyoptimalgrasp,wehavetoevaluate(15)ontheadmissibleedge-tripletsofB.Inspectionof(15)revealsthefollowingchar-acteristicsofthegloballyoptimalgrasp.In(15),whilethetotalpreloadingfTistakentobethesameforalledgetriplets,thequantitiesaandζaredifferentfordifferentedgetriplets.Therefore,whethertheoptimalgrasponagivenedge-tripletistheglobaloptimumoveralledge-tripletsdependsonthedistanceρmax,aswellastheshape(characterizedbyζ)andthesize(characterizedbya)ofthetriangledeterminedbythegivenedgetriplet.Forthequalitymeasuretoassumealargevalue,ρmaxispreferredtobesmall,whileaandζarepreferredtobelarge.Itcanbeverifiedthattheshapeparameterζisboundedbyζ1/4,withequalityholdingforanequilateraltriangle.Thus,theedgesinthetripletarepreferredtobeorientedevenly.Intheidealcase,theedgesare60◦apartandformanequilateral.Itisimportanttonotethattheparametersρmax,a,andζcombinetodeterminethegraspquality;asingleparameteraloneisnotsufficientforthispurpose.Weillustratetheseobservationsintwoexamples.Intheexamples,thefin-gershavezeroradius,andthematerialconstantskiaretakentobeunitywithoutlossofgenerality.Further,thecenterofthesmallestdisccontainingBiscalledthegeometriccenterofB,andtheradiusofthedisciscalledtheradiusρ0ofB.
21
b15e72be8e1e615e5be4e2e3Figure5:3-fingergraspsofanoctagon.
Example5.2.Considertheoptimal3-fingergraspingoftheoctagonshowninFigure5.Thegeometriccenterandradiusoftheoctagonaregivenbythecenterandradiusoftheoctagon’scircumscribingcircle.Hence,ρ0=2b.Wefirstcomparetheoptimalgraspsontheedge-triplets(e1,e4,e7)and(e3,e5,e8).Thesetwoedgecombinationsdeterminetwocongruenttriangles,forwhichthecombinedeffectonQofshapeandsizeisgivenbyaζ=0.3836.Theoptimalconcurrencypointofthetriplet(e1,e4,e7)coincideswiththegeometriccenter.Thus,forthisgraspwehaveρmax=ρ0andQ=0.1918fT/b.Ontheotherhand,theoptimalconcurrencypointof√(e3,e5,e8)liesonthelineofsymmetryofB,atadistance(1−1/
ye3e2e4e1b/2geometric centerxb/2Figure6:3-fingergraspsofaquadrilateral.
centerislocatedat(0.5b,0.125b).Fortheadmissibleedge-triplets(e1,e2,e3)and(e1,e2,e4),theoptimalfingerlocationsareshowninthefigurebyreg-ularandsolidcircles,respectively.Theconcurrencypointsofthesegraspsbothcoincidewiththegeometriccenter.However,theedgetripletscorre-spondtotrianglesofdifferentshapeandsize.Consequently,thesegraspshavedifferentqualitymeasurevalues.Fortheoptimalgraspon(e1,e2,e3)wehaveQ=1.0359fT/b,whilefortheoptimalgraspon(e1,e2,e4)wehaveQ=1.2526fT/b.Theoptimalfingerarrangementon(e1,e2,e4)givesthegloballyoptimalgraspthisobject.
5.2OptimalFour-FingerGrasps
A4-fingergraspofapolygonalobjectinvolvesthreeorfouredges,andwehavetoconsiderall4-fingerplacementsontripletsandquadrupletsofedges.The4-fingergraspsonaparticularedgecombinationareparametrizedasfollows.LetObetheoriginofFBandletEibetheedgecontainingtheithcontact.ThentheithcontactisparametrizedbythesigneddistancesioftheithcontactfromthepointwhereEiintersectsitsperpendicularlinethroughO.(TheparametersiisthetorquegeneratedbyaunitforceniactingonBatthepointri,sincethewrenchisw=(ni,(Rri)×ni)=(ni,(Rri)·ti)=(ni,si),wheretiistheunittangenttoBattheithcontact.)Apoints=(s1,s2,s3,s4)specifiesaparticular4-fingergrasp,andthecollectionofall4-fingergraspsonagivenedgecombinationisarectangularparallelepipedPin4.
Tocharacterizethe4-fingerequilibriumgraspsinP,lethi=(ni,si)denotethewrenchgeneratedbytheunitforceni,andletthefunctionsdi(s)=det([hi+1hi+2hi+3])(mod4)becalledthedeterminantfunctionsas-sociatedwiththeedgecombination.Thedeterminantfunctionscharacterize
23
theequilibriumgraspsasfollows(seeAppendixAforaproof).
Lemma5.2.Anecessaryandsufficientconditionfora4-fingergraspwithacontactconfigurations∈Ptobeanequilibriumgraspisthatd1(s),−d2(s),d3(s)and−d4(s)areallnonzeroandhavethesamesign.
Wewishtoshowthatalmostallthe4-fingerequilibriumgraspsinPhaveapositive-definitestiffnessmatrixandarethereforestable.Accordingtoformula(6),thestiffnessmatrixconsistsoftwosummands,K=K1+K2,whereK1correspondstofirst-ordereffectsandK2tosecond-ordereffects.ItisshowninRef.[6]thatwhenapolygonisgraspedbyfourormorediscfingers,thecontributionsfromK2areoftheorderδ/LcomparedtoK1,whereδisthecharacteristicvalueoftheinitialdeformationsδi(q0)andLisacharacteristicobjectlength.Theratioδ/LisextremelysmallandwemaythereforeuseK1asanexcellentapproximationforK.Substituting∇δi(q0)=−hiin(6)givesthefollowingapproximateformulaforK.Lemma5.3.Leta4-fingerequilibriumgrasphavecontactparameterssifori=1,...,4.Then,withtheframesFWandFBchosentobecoincident,thestiffnessmatrixtakestheapproximateform:
K=
4i=1
wherekiisthematerialconstantandnitheinwardunitnormalattheith
contact.
k
TTT
whereIngeneral,i=1vivi=[v1···vk][v1···vk].HenceK=HH√
k4h4]3×4.WeseethatKispositive-definitewhenHhasH=[
fullrowrank,whichholdstrueatall4-fingerequilibriumgraspsexceptinthespecialcasewherethelinesofthefourcontactnormalscoincide.Thus,exceptforonespecialcase,allthe4-fingerequilibriumgraspsarestable.UsingLemma5.2,thecollectionofstableequilibriumgraspsistheunion7T=T1∪T2,where
T1=P∩s∈4:d1(s),−d2(s),d3(s),−d4(s)<0,
T2=P∩s∈4:d1(s),−d2(s),d3(s),−d4(s)>0.
44
T
knnii=1kisini,i4=1iiTkihihT4i=2ksniiii=1kisii=1
(16)
Weobservethateachfunctiondiislinearins,henceeachTiisaboundedconvexpolytopein4.Thus,foragivenedgecombinationwemayseparatelysearchtheconvexpolytopesT1andT2fortheoptimalfingerarrangement.NextwederiveaformulaforQonaparticularedgecombination.Bydefinition,thetranslationalstiffnessparametersaretheeigenvaluesofthesubmatrixK11,whiletherotationalstiffnessparameterisgivenbyµ=K22−4−1TK12K11K12.Using(16),thesubmatrixK11=i=1kininT
iisconstanton
agivenedgecombination,andσ1,σ2arepositiveconstantsonagivenedgecombination.Asforµ,substitutionofthesubmatricesKijaccordingto(16)gives:
µ(s)=
whichcanbeshowntobeanon-negativequadraticfunctionofs.Notethatwhileµisaconstantforall3-fingergraspsonagivenedge-triplet,itisaquadraticfunctionofsin4-fingergraspsonagivenedgecombination.TocomputeQ,wealsoneedaformulafortheequivalentrotationalstiffnessµeq=µ/ρ2max,whereρmaxisthedistancefromthegrasp’scenterofcompliancetothefarthestvertexofB.Letpdenotethegrasp’scenterofcompliance.
−1
Thenaccordingto(11),p=JK11K12,whereweassumethattheframeFBisalignedwiththeforKijaccordingtoLemmaW.Substituting4frameFT4
−1
5.3gives:p(s)=J[i=1kinini]i=1kisini,whichislinearins.Thus,2ρ2max(p(s))=max{vi−p(s)}overtheverticesv1,...,vnofB.Sincep(s)islinearins,ρ2max(p(s))isthemaximumofnpositivedefinitequadraticfunctionsins.ThemaximumvalueofthequalitymeasureQisgivenonaparticularedgecombinationby
µ(s)
Q=minσ1,σ2,max{
s∈T1∪T2
4i=1
kis2i−
4
i=144−1
kisinTkininTkisini,ii
i=1
i=1
min{σ1,σ2}isconstantonagivenedgecombination,andtheformulaQ=min{σ1,σ2,µeq}indicatesthatQσminonagivenedgecombination.Henceifwefindinthecourseofmaximizingµeq(s)somes∗suchthatµeq(s∗)σmin,thiss∗isnecessarilytheoptimalfingerarrangementonthegivenedgecombination.Second,σministhesmallesteigenvalueofthematrix441TK11=knn.HenceQσiiminii=1i=1ki,2
wheretr(·)isthetraceoperator.Toimprovethisbound,thecontactnor-malsniarepreferredtobeevenlyoriented.Inparticular,ifthematerialconstantsareuniformwithki=k,thenσmin2k,andequalityholdswhenthecontactnormalsare90◦apart,namely,theedgecombinationformsarectangle.Nextwediscusstheparametersthatinfluenceµeq(s).Sinceµeq(s)=µ(s)/ρ2max(p(s)),theparameterρmaxisdesiredtobesmallwhileµispreferredtobelarge.Butµisthegrasp’sstiffnessabout4rotationalthecenterofcompliance,andisgivenbyµ=i=1kis¯2¯iistheithi,wheres
contact’smomentaboutthecenterofcompliance.Thus,forµtoassumealargevalue,each|s¯i|isdesiredtobelarge.Thisindicatesthatthefingersshouldspreadapartasmuchaspossiblewithrespecttothecenterofcompli-ance.Tosummarize,foragrasptohavegoodstiffnessquality,itispreferredthattheedgesbeevenlyorientedtomakeσminlarge;thatthefingersspreadapartwithrespecttothecenterofcompliancetomakeµlarge;andthatthedistancefromthegrasp’scenterofcompliancetoB’farthestvertexbesmall,tomakeρmaxsmall.Theseparameterscombinetodeterminetheoptimalgrasp.
grasp rectangle2b2s22s12acenter ofcomplianceFigure7:4-fingergraspsofarectangularobject,withtheoptimalgraspshowninblackdots.
Example5.4.Inthefollowingexamplesweassumepointfingersanduni-formelasticityconstantsofki=k.Figure7showsarectangularobjectBofsize2a×2b.WhenBisgraspedbyfourfingers,eachfingermustcontactadifferentedgeofB.Thecontactnormalsare90◦apart,andσminachieves
26
itsupperbound:σmin=2kforallfingerarrangements.Nowconsidertheequivalentrotationalstiffness,µeq=µ/ρ2max.GivenanyequilibriumgraspofB,thelinesofthecontactnormalsformarectangle,whichwecallthegrasprectangletodistinguishitfromtherectangularobject.Itcanbeverifiedthatthegrasp’scenterofcomplianceislocatedatthecenterofthegrasprectangle[2].Moreover,therotationalstiffnessisgivenbyµ=2k(¯s2¯21+s2),wheres¯1ands¯2arethehalf-lengthandhalf-widthofthegrasprectangle.Clearly,whenthefingersareplacedattheendsoftheobject’sedgeswiths¯1=aands¯2=basshowninthefigure,µachievesitsmaximumvalue:µ=2k(a2+b2).Indeed,thisgraspobeystherulethatthefingersshouldspreadapartwithrespecttothecenterofcompliance.Also,thecenterofcomplianceforthisgraspcoincideswithB’scenterofsymmetry,andthedistance√fromthecenterofcompliancetoB’sfarthestvertexisminimized:ρmax=
ofabasefingerataninteriorpointofthebaseedge,thereexistsanalternativeplacementofahigherµeqvalue,suchthatbothbasefingersarelocatedatthebase’sendpoints.Thuswemayrestrictourattentiontofingerarrangementswherethebasefingersareattheendpointsofthebaseedge.
LetAbetheintersectionpointofthesidefingers’forcelines.Bysymme-try,weneedonlyconsiderfingerarrangementsinwhichthepointAliesintherighthalfplaneboundedbythelineofsymmetryℓs(Figure8(a)).LetxdenotethehorizontaldistancebetweenAandℓs.WiththestiffnessmatrixcomputedfromLemma5.3,itcanbeshownthatµ=2k(b2+x2/5),andthatthecenterofcomplianceislocatedonthesamehorizontallineasthepointA,atadistanceofx/5fromℓs(Figure8(a)).Nowconsiderafixedvalueofx,i.e.,thesidefingersmoveinawaysuchthatthepointA,alongwiththecenterofcompliance,isatafixeddistancetothelineℓs.Thenµeqismaximizedasthecenterofcompliancemovesontothebisectoroftheleftsideedge,sincewithµaconstant,thisminimizesρmaxforthegivenx.Thus,wecanfocusonaone-parameterfamilyofgrasps,wherethehorizontallinethroughAintersectstheleftedge’sbisectoratadistancex/5toℓs.Astheparameterxincreases,
22
µ(x)andρ2max(x)=(100b+20bx+4x)/75bothincreaseandcompetetodeterminethevariationofµeq(x)=µ(x)/ρ2max(x).Asimplecalculationshowsthatµeq(x)ismaximizedatx=0,withµeq(0)=1.5k.Itfollowsthattheoptimalgraspcorrespondstox=0,withQ=min{σmin,µeq}=1.5k.AsshowninFigure8(b),intheoptimalgraspthesidefingers’forcelinesintersectattheB’scenterofsymmetry.
ygeometric centerxbFigure9:Globaloptimalgraspofaquadrilateral.
Example5.6.Inthepreviousexamples,thesymmetryoftheobjectsal-lowedanalyticalanalysisoftheoptimalfingerarrangement.Forageneralpolygonalobjectitisnecessarytousethenumericalprocedureoutlinedin
28
AppendixB.Thisexampleconsiderstheoptimal4-fingergraspingofthequadrilateralusedinExample5.3forthe3-fingercase.Recallthattheverticesofthisquadrilateralhavecoordinates(0,0),(b,0),(0.7b,0.6b)and(0.15b,0.45b),andthatthegeometriccenterhascoordinates(0.5b,0.125b).Byconsideringallfeasibleedgecombinationswecanfindtheoptimalgraspassociatedwitheachcombination,andfurtherdeterminethegloballyopti-malgrasp,whichisshowninFigure9.Forthisgrasp,σmin=1.684kandµeq=1.882k,henceQ=1.684k.Inaddition,thecenterofcomplianceofthisgraspcoincideswiththegeometriccenteroftheobject.Thereforetheopti-malfingerarrangementmaximizesµeqbyminimizingρmax,andbyspreadingapartthetwofingersonthebaseedgetoallowµtoassumealargevalue.
6Conclusion
Wedescribedtheframe-invariantparametersofthestiffnessmatrixandusedtheseparameterstodefineastiffnessqualitymeasureforcompliantgraspsorfixtures.Thequalitymeasureisbasedontheprincipaltranslationalstiff-nessesσi(i=1,2,3)andtheprincipalrotationalstiffnessesµi(i=1,2,3)ofagrasp.Themeasurealsodependsonascalingfactor.Thisfactor,basedonequivalenceofelasticenergyandtheobject’sdeflection,convertstherotationalstiffnessesintoequivalentstiffnessesµeqi(i=1,2,3),whichcanbemeaningfullycomparedwiththetranslationalstiffnesses.There-sultingqualitymeasureisgivenbyQ=min{σ1,σ2,µeq}for2DgraspsandbyQ=min{σmin,µeqmin}for3Dgrasps,whereσmin=min{σ1,σ2,σ3}andµeqmin=min{µeq1,µeq2,µeq3}.Thequalitymeasurereflectstheworst-casestiffnessofagrasp,andingeneralthehigherthequalitymeasurethebetterthegrasp.
Thestiffnessqualitymeasurehasseveralimportantproperties.First,themeasureisindependentofthechoiceofobjectandworldframes.Second,themeasureisexplicitlydesignedforcompliantgrasps,andisthefirstsys-tematiceffortinquantifyingtheeffectivenessofcompliantgrasps.Moreover,thequalitymeasureisformulatedintermsofageneralclassofcompliancemodels,whichincludesthewellknownHertzmodelasaspecialcase.Third,thequalitymeasureisvalidforgraspsof2Dand3Dobjectsbyanynumberoffingers.Inparticular,itisknownthatcurvatureeffectscansignificantlyreducethenumberoffrictionlessfingersorfixturesrequiredtostablygraspanobject.(AnadaptationofRef.[18]yieldsthat3convexfingerssuffice
29
tostablygraspalmostany2Dobject,and4convexfingersseemtosufficetostablygraspalmostany3Dobject.)Thestiffnessqualitymeasureauto-maticallyincludesfirst-ordereffects(i.e.fingerpositionsandcontactnormaldirections)withsecond-ordereffects(i.e.surfacecurvatureatthecontacts)inasinglemeasure.Thequalitymeasureisthususefulforassessinginauniformwaytheeffectivenessofgraspswhichinvolvedifferentnumberoffingersanddifferenttypesofgeometricaleffects.
Wealsoconsideredthecomputationoftheoptimalgraspofapolygonalobjectbythreeandfourfingers.Ineachcaseweattemptedtocharacterizethequalitativepropertiesoftheoptimalgrasp.Forexample,wefoundthatQhasahighervalueonevenlyorientededgecombinations.Wealsofoundthatthefingersshouldspreadapartasmuchaspossiblewithrespecttothegrasp’scenterofcompliance,whileattemptingtobringthecenterofcomplianceasclosetotheobject’spointsaspossible.Thesepropertiesallcombinetodeterminetheoptimalgrasp,whichasillustratedintheexamplesisintuitivelyeffective.Thereareseveralissuesthatcallforfurtherresearch.Whilewedevelopedanefficientprocedureforgloballyoptimalgraspingusingthelinearcontactmodel,practicalglobaloptimizationwithnonlinearcontactmodels,suchastheHertzmodel,needstobeaddressed.Wehaveindicatedthatourqualitymeasurecanbeusedtoevaluatetheeffectivenessofanygiventhree-dimensionalgrasp.However,itremainsopentocomputeoptimalthree-dimensionalgraspswiththisqualitymeasure,basedoneitherlinearornonlinearcontactmodels.Finally,thenotionofobjectdeflectionisinvokedtocomparetranslationalandrotationalstiffnesses.However,thequalitymeasureisnotanindicatorthatdirectlyassessestheobject’sdeflection,whichmaybedesirableinapplicationssuchasworkpiecefixturing.Thisissueisbeingaddressedbyourongoingresearch.
Finallywementionpotentialapplicationsofthiswork.Thestiffnessqual-itymeasureisusefulforpassivegraspandfixtureplanning.Animportantapplicationofthistypeisworkpiecefixturing,whereapartisheldbyfix-tureelementsformachiningpurposes.Thefixtureelementshavetoprotecttheworkpiecefromdeflectingundertheloadofthemachiningforces,andthestiffnessqualitymeasurecanindicatethenumberandlocationoffixtureelementsthatbestsuitthegiventask.Thequalitymeasureisalsousefulforactivegraspplanning,wherefingerlinkageshavetostablygraspanob-ject.Asseveralresearchershavesuggested[1,2],wemayperformsuchtasksbysimulatingvirtualspringsatthecontacts.Thestiffnessqualitymeasureisusefulforselectingtheoptimalplacementandstiffnessofsuchsprings,
30
basedontheobject’sgeometry.Themeasurealsoallowsaninclusionofthefingers’geometryintotheplanning,therebyprovidingatoolforselectingamongseveralpossiblefingergeometriesinapplicationswheresuchachoiceisavailable.
AProofofLemmas5.1and5.2
ProofofLemma5.1.Denotethefirstandsecondsummandsin(6)byK1andK2,respectively.Bythechoiceoforigintheoverlapgradientfor-mula(5)simplifiesto∇δi(q0)=(ni,0),fromwhichitfollowsthatK1=
T
diag(3i=1kinini,0).TocomputeK2,itcanbeshown[6]thatforapointfingercontactingastraightedge,theoverlapderiavativeformulaisgivenbyD2δi(q0)=diag(0,0,ρi+r),whereρiisthedistancefromtheconcur-rencypointtotheithcontactpoint(positiveifthefingerandthecon-currencypointlieontheoppositesidesoftheithedge).weobtainThus,33K2=diag(0,0,µ),whereµ=fTi=1νi(ρi+r)=fT(i=1νiρi+r).Inthisformula,fT=3i=1fiisthetotalpreloadingforce,fiarethepreloadingfingerforces,andtheratiosνiaredefinedbyνi=fi/fT.Whennipositivelyspan2,itcan3beshownfrom(4)thatthesenormalsuniquelydetermineνibyνi=di/(j=1dj),wheredi=det([ni+1ni+2])(mod3).Usingelemen-tarygeometry,wecanexpressνiintermsofthetriangle’sinteriorangles,andexpressρiintermsofthetriangle’sedgelengthsandinteriorangles,aswellastheoftheconcurrencypoint.Thenwecanfurthershowthatlocation3
thesumi=1νiρiisactuallyindependentofthelocationoftheconcurrencypoint,andisgivenby2aζ.
ProofofLemma5.2.Thefingerarrangementcorrespondingtosisanequi-libriumgraspiffthewrenchesh1,h2,h3,h4positivelyspanthezerowrench.Firstsupposethatd1(s),−d2(s),d3(s)and−d4(s)arenonzeroandhavethesamesign.Toprovethatthewrencheshipositivelyspantheorigin,weshowthatthereexistν1,ν2,ν3>0suchthatthevectorν=(ν1,ν2,ν3)solvestheequation[h1h2h3]ν=−h4.Sinced4=det([h1h2h3])=0,wecanuseCramer’sruletoobtainν=−(d1d4,d3
normalsniandni+1intersect,andhencedet([nini+1])=0,forallimod4.Nowsupposethatdi(s)=0forsomei.Withoutlossofgenerality,wemaychoosethelocationoftheoriginsothatitcoincideswiththeintersectionofni+1andni+2.Thussi+1=si+2=0,andthedeterminantfunctionditakestheformdi(s)=si+3det([ni+1ni+2]).Butdi(s)=0byassumption,hencesi+3=0.Thusthenormalsni+1,ni+2andni+3intersectatacommonpoint.Tomaintainequilibrium,nimustpassthroughthisintersection,hencesi=0.Now,equilibriumalsoimpliesthatthereexistν1,...,ν4>0suchthat4i=1νihi=0,or[h1h2h3]ν=−ν4h4.UseofCramer’sruleagaingivesν=−ν4(d1d4,d3
f(s)
,(17)
whereµandfarepositivesemidefinitequadraticfunctionswithf(s)>0whenevers∈D,andthedomainDisaconvexpolyhedralsubsetof4.Weareinterestedinfindingtheglobalmaximumofµeq(s)overD.How-ever,µeqisanonconvex,stronglynonlinearfunction,anditsglobalmaximummayingeneralbeverydifficulttofind.Fortunately,theapproachtobedis-cussedinthesectionoffersaneffectivealgorithmtofindtheglobaloptimum.Letusfirstdefineafunctionφ:×D→by
φ(t,s)=µ(s)−tf(s).
Foragivent∈,thereexistss∈Dsuchthatt=µeq(s)ifandonlyifφ(t,s)=0.Thus,themaximizationproblem(17)isequivalenttomaximizingt∈suchthat(t,s)isazeroofφforsomes∈D.Toaddressthisequivalentproblem,wefurtherdefineascalarfunctionψ:→by
ψ(t)=maxφ(t,s).
s∈P
32
Thisfunctionhassomeinterestingproperties.For∆t>0,sincef(s)isstrictlypositive,wehave
ψ(t+∆t)=max(µ(s)−tf(s)−∆f(s)) s∈D Inotherwords,ψisstrictlymonotonicdecreasing.Inaddition,sinceψ(0)=maxs∈Dµ(s)>0,andψ(t)→−∞ast→∞,thereexistsauniquet∗>0suchthatψ(t∗)=0.Thatis,ψhasaunique,positivezero.Thefollowingpropositionindicatesthatthemaximizationofµeq(s)overDisequivalenttothecomputationoftheuniquezeroofthescalarfunctionψ,whoseevaluationisperformedbymaximizingφ(t,s),aquadraticfunctionofs. PropositionB.1.Maximizingµeq(s)overDisequivalenttofindingtheuniquezeroofψinthefollowingsense.Apositivenumbert∗>0satisfiesψ(t∗)=0ifandonlyift∗=maxs∈Dµeq(s).Inthiscase,acontactconfigu-rations∗∈Dmaximizesφ(t∗,s),regardedasafunctionofs,overDifandonlyifitmaximizesµeq(s)overD. Proof.Ift∗=µeq(s∗)=maxs∈Dµeq(s),thenφ(t∗,s∗)=0.Foranys∈D,wehave φ(t∗,s)=µ(s)−t∗f(s)=f(s)(µeq(s)−t∗)0=φ(t∗,s∗). Henceψ(t∗)=φ(t∗,s∗)=maxs∈Dφ(t∗,s)=0.Conversely,supposethatψ(t∗)=0forsomet∗>0.Givenany∆t>0,wehave φ(t∗+∆t,s)ψ(t∗+∆t)<ψ(t∗)=0, wherethestrictmonotonicityofψhasbeenused.Thisindicatesthatthereexistnos∈Dsuchthatφ(t∗+∆t,s)=0forany∆t>0.Hencet∗=maxs∈Dµeq(s).Moreover,lets∗∈Dbesuchthatψ(t∗)=φ(t∗,s∗)=maxs∈Dφ(t∗,s).Thenbydefinitionofφ,wehavet∗=µ(s∗)/f(s∗)=µeq(s∗).Hence,s∗maximizesµeq. Itfollowsfromthispropositionthattheoptimizationproblem(17),whichmaximizesµeqoverD,isequivalenttosolvingfortheuniquerootofthescalarequationψ(t)=0.Notethattoevaluateψatsomet,weneedtomaximizeaquadraticfunctionofs,whichisingeneralindefinite,i.e.,,thematrixas-sociatedwiththequadraticterminthisfunctionhaspositiveandnegative 33 eigenvalues.Indefinitequadraticprogramming(IQP)isunfortunatelyNP-hard,andtheknownalgorithmsareexponentialinthenumberofvariables.Forexample,Refs.[19,20]describeanindefinitequadraticminimizational-+1)p gorithmwhichtakesO(l(m(mǫ))steps,wheremisthenumberofvariablesandpthenumberofnegativeeigenvaluesofthequadraticobjectivefunction.Inthisbound,listhetimeittakestosolveaconvexquadraticoptimiza-tionproblemofthesamesize,whichisO(nlogǫ)wherenisthenumberoflinearconstraintsinthepolytopeD.Sinceinourcasem=4andp4,thenumberofstepsislinearinthenumberofconstraints,withasomewhatlargeconstantdeterminedbythedimensionm=4.Thus,givenmbeingsmall,ourapproachprovidesapracticalprocedurewhichguaranteestofindtheglobaloptimumatareasonablecomputationalcostdespitethestronglynonlinearandnonconvexnatureofthestiffnessqualitymeasure. References [1]H.HanafusaandH.Asada,“Stableprehensionbyarobothandwith elasticfingers,”inProc.7thInt.Symp.onIndustrialRobots,Tokyo,pp.361–368,October1977.[2]V.-D.Nguyen,“Constructingstablegrasps,”Int.J.ofRoboticsRe-search,vol.8,no.1,pp.26–37,19.[3]W.S.HowardandV.Kumar,“Stabilityofplanargrasps,”inProc.Int. Conf.onRoboticsandAutomation,SanDiego,CA,pp.2822–2827,May1994.[4]M.R.CutkoskyandP.Wright,“Friction,stabilityandthedesignof roboticfingers,”Int.J.ofRoboticsResearch,vol.5,no.4,pp.20–37,1986.[5]E.RimonandJ.W.Burdick,“Mobilityofbodiesincontact—ii:How forcesaregeneratedbycurvatureeffects,”inProc.Int.Conf.onRoboticsandAutomation,SanDiego,CA,pp.2336–2341,May1994.[6]Q.Lin,J.W.Burdick,andE.Rimon,“Computationandanalysisof complianceingraspingandfixturing,”inProc.Int.Conf.onRoboticsandAutomation,Albuquerque,NM,pp.93–99,April1997. 34 [7]B.Mishra,“Graspmetrics:Optimalityandcomplexity,”in1994Work-shoponAlgorithmicFoundationsofRobotics,pp.137–165,A.K.Peters,WellseleyMA,1995.[8]Z.LiandS.Sastry,“Taskorientedoptimalgraspingbymultifingered robothands,”IEEETrans.onRoboticsandAutomation,vol.4,no.1,pp.32–44,1988.[9]D.G.Kirkpatrick,B.Mishra,andC.K.Yap,“Quantitativesteinitz’s theoremswithapplicationstomultifingeredgrasping,”inProc.20thACMSymp.onTheoryofComputing,Baltimore,MD,pp.341–351,May1990.[10]C.FerrariandJ.Canny,“Planningoptimalgrasps,”inProc.Int.Conf. onRoboticsandAutomation,Nice,France,pp.2290–2295,May1992.[11]X.MarkenscoffandC.H.Papadimitriou,“Optimumgripofapolygon,” Int.J.ofRoboticsResearch,vol.8,no.2,pp.17–29,19.[12]B.MirtichandJ.Canny,“Easilycomputableoptimumgraspsin2-D and3-D,”inProc.Int.Conf.onRoboticsandAutomation,SanDiego,CA,pp.739–747,May1994.[13]M.Teichmann,“Agraspmetricinvariantunderrigidmotions,”inProc. Int.Conf.onRoboticsandAutomation,Minneapolis,MN,pp.2143–2148,April1996.[14]T.PattersonandH.Lipkin,“Structureofrobotcompliance,”ASMEJ. ofMechanicalDesign,vol.115,no.3,pp.576–580,1993.[15]S.P.TimoshenkoandJ.N.Goodier,Theoryofelasticity.NewYork: McGraw-Hill,3rded.,1969.[16]Q.Lin,J.W.Burdick,andE.Rimon,“Issuesinoptimalgraspingand fixturingofworkpieces,”tech.rep.,Dept.ofMechanicalEngineering,CaliforniaInst.ofTechnology,Pasadena,CA,1996.[17]Y.E.NesterovandA.S.Nemirovsky,InteriorPointPolynomialMeth-odsinConvexProgramming:TheoryandApplications.SpringerVerlag,1992. 35 [18]E.RimonandJ.Burdick,“Newboundsonthenumberoffrictionlessfin-gersrequiredtoimmobilizeplanarobjects,”J.RoboticSystems,vol.12,no.6,pp.433–451,1995.[19]C.A.FloudasandV.Visweswaran,“Quadraticoptimization,”inHand-bookofGlobalOptimization(R.HorstandP.M.Pardalos,eds.),KluwerAcademicPublishers,1995.[20]S.Vavasis,NonlinearOptimization:ComplexityIssues.OxfordUniver-sityPress,1991. 36              
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo0.cn 版权所有 湘ICP备2023017654号-2
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务