您好,欢迎来到华佗小知识。
搜索
您的当前位置:首页(浙江专版)2019年高考数学一轮复习 专题4.3 简单的三角恒等变换(测)

(浙江专版)2019年高考数学一轮复习 专题4.3 简单的三角恒等变换(测)

来源:华佗小知识
精 品 试 卷

第03节 简单的三角恒等变换

班级__________ 姓名_____________ 学号___________ 得分__________

一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只

有一项是符合题目要求的.

1.【2018年全国卷Ⅲ文】函数的最小正周期为( )

A. B. C. D. 【答案】C

2.【2018届浙江省台州市高三上期末】已知为锐角,且,则

A. B. C. D.

【答案】D 【解析】

,故选D.

3.【2017山东,文4】已知A.

B.

C.

,则

D.

【答案】D

推荐下载

精 品 试 卷

【解析】由得,故选D.

4.已知,则( )

A. B. C. D.

【答案】B

5.【2018届黑龙江省哈尔滨师范大学附属中学三模】已知A.

B.

C.

D.

,则

=( )

【答案】B

【解析】分析:首先根据差角公式将题中所给的式子拆开,化简得到后将其平方,求得详解:因为将式子两边平方得所以

,故选B.

,所以

,利用正弦的倍角公式求得结果.

,之

6. 已知A.

B.-

,且满足 C.

,则

D.

值( )

【答案】C

推荐下载

精 品 试 卷

【解析】,整理可得,

解得或.因为,所以.

.故C正确.

7.【2018河北内丘中学8月】若,则( A. B. C. D.

【答案】C

【解析】由题意可得: ,

据此整理可得: ,

则:

.

本题选择C选项.

8.【2018届四川省成都市第七中学高考模拟一】已知,则=(A.

B.

C. D.

【答案】B

推荐下载

精 品 试 卷

9.【2018届河北省石家庄二中三模】设A. 【答案】B

【解析】分析:(1)方法一、运用同角变换和两角差公式,即 再根据诱导公式和角的范围,确定正确答案。 (2)方法二、运用诱导公式和二倍角公式,通过案。

详解:方法一:

整理得

,∴

整理得

的变换化简,确定正确答

化简,

B.

C.

,且 D.

,则( )

方法二:

推荐下载

精 品 试 卷

,∴

整理得故选B

10.【2018届安徽省江南十校二模】 为第三象限角,A.

B.

C.

D.

,则

( )

【答案】B

【解析】分析:先由两角和的正切公式求出详解:由

,得

,再利用同角三角函数基本关系式进行求解.

由同角三角函数基本关系式,得

解得

又因为为第三象限角, 所以则

二、填空题:本大题共7小题,共36分. 11.【2018年全国卷II文】已知【答案】

,则

__________.

推荐下载

精 品 试 卷

12. 【2017课标II,文13】函数【答案】【解析】

的最大值为 .

13.【2018届安徽亳州市涡阳一中最后一卷】已知

__________.

【答案】

,可得

,,则

【解析】分析:由代入即可的结果. 详解:因为

,利用二倍角公式化简,

,所以,

,故答案为.

14.【2018届浙江省部分市学校(新昌中学、台州中学等)高三上学期9+1联考】设

,则

__________;

__________.

【答案】 【解析】∵∴∵

推荐下载

精 品 试 卷

故答案为: ,

15.【2018届四省名校第三次大联考】已知

_______.

,且满足,则

【答案】

【解析】分析:由已知条件

的值代入化简后的式子,求出值。 详解:因为

,所以

求得的值,再将所求的式子化简,将

, 则

,而

16.【2018年【衡水金卷】模拟】已知

__________.

【答案】

。 ,

,则

推荐下载

精 品 试 卷

17.【2018届河南省郑州外国语学校高三第十五次调研】已知

,则

【答案】

.

求得

的最大值为______.

,满足

【解析】分析:由

利用三角函数的有界性可得结果. 详解:由得化为

, ,

故答案为

的最大值为.

化为,

三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.

18.【2018江苏南京溧水高级中学期初】已知, , ,

.

(1) 求(2) 求

的值; 的值.

【答案】(1);(2).

的范围,确定

,直接利用二倍角的余弦,求

【解析】试题分析:(1)根据

的值;(2)根据(1)求出,再求出,通过,求

的值.

推荐下载

精 品 试 卷

试题解析:(1)∵cos =

又∵ ∴cos=

(2)由(Ⅰ)知:sin=

由、得()()

cos(sin

=sin(

)=--)=sin(

)cos

-cos(

)sin

=× -×为锐角,

= . ,

19. 【2018年江苏卷】已知(1)求(2)求【答案】(1)(2)

的值;

的值.

推荐下载

精 品 试 卷

(2)因为又因为因此

为锐角,所以

,所以.

因为,所以,

因此,

20.【2018届浙江省绍兴市3月模拟】已知函数(Ⅰ)求(Ⅱ)若【答案】(1)

的最小正周期;

,且 (2)

,求

的值.

.

【解析】试题分析:(1)第(Ⅰ)问,直接化简函数,再利用三角函数的周期公式求解. (2)第(Ⅱ)问,先解方程试题解析:(Ⅰ)即所以

.

的最小正周期

,得

,即

.

.

中,以轴为始边作角,角

.

得到的值,再求

的值.

.

(Ⅱ)由又因为所以所以

21.【2018届江苏省盐城中学仿真模拟】在平面直角坐标系

的终边经过点(I)求(Ⅱ)求【答案】(1)

的值;

的值. ; (2)

. .

推荐下载

精 品 试 卷

【解析】分析:(1)由于角其终边经过点,故,,

再利用两角和与差的正余弦公式即可; (2)直接利用公式即可.

(2) 则

.

.

22.【浙江省杭州市学军中学2018年5月模拟】已知函数(Ⅰ)求(Ⅱ)若在【答案】(1)(2)

.

的最小正周期;

中.

,求的值.

,所以

因为A+B=

,所以

,

,

推荐下载

精 品 试 卷

所以

所以

B=

. .

所以

或.

推荐下载

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo0.cn 版权所有 湘ICP备2023017654号-2

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务