模拟比较器:将模拟量与一标准值进行比较,当高于该值时,输出高(或低)电平.反之,则输出低(或高)电平.例如,将一温度信号接于运放的同相端,反相端接一电压基准(代表某一温度),当温度高于基准值时,运放输出高电平,控制加热器关闭,反之当温度信号低于基准值时,运放输出低电平,将加热器接通.这一运放就是一个简单的比较器,因为输入与输出同相,称为同相比较器..有的模拟比较器具有迟滞回线,称为迟滞比较器,用这种比较器,有助于消除寄生在信号上的干扰.
数字比较器:用来比较二组二进制数是否相同,相同时输出(或低)高电平,反之,则输出相反的电平.
最简单的数字比较器是一位二进制数比较器,是一个异或门(或同或门).
电压比较器的作用:它可用作模拟电路和数字电路的接口,还可以用作波形产生和变换电路等。利用简单电压比较器可将正弦波变为同频率的方波或矩形波
电压比较器是集成运放非线性应用电路,他常用于各种电子设备中,那么什么是电压比较器呢?下面我给大家介绍一下,它将一个模拟量电压信号和一个参考固定电压相比较,在二者幅度相等的附近,输出电压将产生跃变,相应输出高电平或低电平。常用的电压比较器有过零电压比较器、具有滞回特性的过零比较器、滞回电压比较器,窗口(双限)电压比较器.
1.模拟比较器
将模拟量与一标准值进行比较,当高于该值时,输出高(或低)电平.反之,则输出低(或高)电平.例如,将一温度信号接于运放的同相端,反相端接一电压基准(代表某一温度),当温度高
于基准值时,运放输出高电平,控制加热器关闭,反之当温度信号低于基准值时,运放输出低电平,将加热器接通.这一运放就是一个简单的比较器,因为输入与输出同相,称为同相比较器..有的模拟比较器具有迟滞回线,称为迟滞比较器,用这种比较器,有助于消除寄生在信号上的干扰.
2.数字比较器
用来比较二组二进制数是否相同,相同时输出(或低)高电平,反之,则输出相反的电平.
最简单的数字比较器是一位二进制数比较器,是一个异或门(或同或门).
电压比较器可以看作是放大倍数接近“无穷大”的运算放大器。
电压比较器的功能:比较两个电压的大小(用输出电压的高或低电平,表示两个输入电压的大小关系):
当”+”输入端电压高于”-”输入端时,电压比较器输出为高电平;
当”+”输入端电压低于”-”输入端时,电压比较器输出为低电平;
电压比较器的作用:它可用作模拟电路和数字电路的接口,还可以用作波形产生和变换电路等。利用简单电压比较器可将正弦波变为同频率的方波或矩形波。
简单的电压比较器结构简单,灵敏度高,但是抗干扰能力差,因此我们就要对它进行改进。改进后的电压比较器有:滞回比较器和窗口比较器。
运放,是通过反馈回路和输入回路的确定“运算参数”,比如放大倍数,反馈量可以是输出的电流或电压的部分或全部。而比较器则不需要反馈,直接比较两个输入端的量,如果同相输入大于反相,则输出高电平,否则输出低电平。电压比较器输入是线性量,而输出是开关(高低电平)量。一般应用中,有时也可以用线性运算放大器,在不加负反馈的情况下,构成电压比较器来使用。
可用作电压比较器的芯片:所有的运算放大器。常见的有LM324 LM358 uA741 TL081\\2\\3\\4 OP07 OP27,这些都可以做成电压比较器(不加负反馈)。LM339、LM393是专业的电压比较器,切换速度快,延迟时间小,可用在专门的电压比较场合,其实它们也是一种运算放大器。
单片机的比较器可以看作1位的ADC。很多场合需要检测模拟电压,比如一个湿度报警器,传感器模拟信号经过放大后直接接在比较器输入端,跟参考电压比较,当大小发生变化时,就可以输出逻辑0、1,单片机检测这个电平就可以进行相应的处理了。这样电路设计起来方便一些。
有些单片机(2051,LPC900 FLASH)自带比较器模块,可以实现电压监控,AD转换等诸多功能,可以在一定程度上减少外围元器件,节省成本,增加系统稳定性.
数值比较器,数值比较器的作用和原理是什么?
2010年03月22日 13:55 www.elecfans.co 作者:佚名 用户评论(0)
关键字:数值(11)比较器(108)
数值比较器,数值比较器的作用和原理是什么?
一、数值比较器的定义及功能
在数字系统中,特别是在计算机中都具有运算功能,一种简单的运算就是比较两个数A和B的大小。数值比较器就是对两数A、B进行比较,以判断其大小的逻辑电路。比较结果有A>B、A<B以及A=B三种情况。
1.一位数值比较器
1位数值比较器是多位比较器的基础。当A和B都是1位数时,它们只能取0或1两种值,由此可写出1位数值比较器的真值表:
由真值表得到如下逻辑表达式:
由以上逻辑表达式可画出如下图所示的逻辑电路。实际应用中,可根据具体情况选用逻辑门。
2.两位数值比较器 现在分析比较两位数字A1A0和B1B0的情况。 利用1位比较器的结果,可以列出简化的真值表如下:
为了减少符号的种类,不再使用字母L,而以(Ai>Bi)、(Ai<Bi)、(Ai=Bi)直接表示逻辑函数。可以由真值表对两位比较器作如下简要概述。 当高位(A1、B1)不相等时,无需比较低位(A0、B0),两个数的比较结果就是高位比较的结果。 当高位相等时,两数的比较结果由低位比较的结果决定。 由真值表可以写出如下逻辑表达式:
根据表达式画出逻辑图:
电路利用了1位数值比较器的输出作为中间结果。它所依据的原理是,如果两位数A1A0和B1B0的高位不相等,则高位比较结果就是两数比较结果,与低位无关。这时,由于中间函数(A1=B1)=0,使与门G1、G2、G3均封锁,而或门都打开,低位比较结果不能影响或门,高位比较结果则从或门直接输出。如果高位相等,即(A1=B1)=1,使与门G1、G2、G3均打开,同时由(A1>B1)=0和(A1<B1)=0作用,或门也打开,低位的比较结果直接送达输出端,即低位的比较结果决定两数谁大、谁小或者相等。
二、集成数值比较器
我们以74LS85为例来说明集成数值比较器。
1.集成数值比较器74LS85得功能 集成数值比较器74LS85是4位数值比较器,其功能如下:
从功能表可以看出,该比较器的比较原理和两位比较器的比较原理相同。两个4位数的比较是从A的最高位A3和B的最高位B3进行比较,如果它们不相等,则该位的比较结果可以作为两数的比较结果。若最高位A3=B3,则再比较次高位A2和B2,余类推。显然,如果两数相等,那么,比较步骤必须进行到最低位才能得到结果。
真值表中的输入变量包括A3与B3、A2与B2、A1与B1、A0与B0和A与B的比较结果。其中A和B是另外两个低位数,IA>B、IA再根据74LS85的功能表可得:
上式与逻辑图一致。由上式可以看出,仅对4位数进行比较时,应对IA>B、IA<B和IA=B进行适当处理,即IA>B=IA<B=0,IA=B=1。
2.数值比较器的位数扩展
现在来讨论一下数值比较器的位数扩展问题。数值比较器的扩展方式有串联和并联两种。
下图表示两个4位数值比较器串联而成为一个8位数值比较器。
我们知道,对于两个8位数,若高4位相同,它们的大小则由低4位的比较结果确定。因此,低4位的比较结果应作为高4位的条件,即低4位比较器的输出端应分别与高4位比较器的IA>B、IA<B、IA=B端连接。
当位数较多且要满足一定的速度要求时,可以采取并联方式。
下图表示16位并联数值比较器的原理图。
由图可以看出,这里采用两级比较方法,将16位按高低位次序分成4组,每组4位,各组的比较是并行进行的。将每组的比较结果再经4位比较器进行比较后得出结果。显然,从数据输入到稳定输出只需两倍的4位比较器延迟时间,若用串联方式,则16位的数值
比较器从输入到稳定输出需要4倍的4位比较器的延迟时间。
比较器[编辑]
维基百科,自由的百科全书
跳转至: 导航、 搜索
比较器是通过比较两个输入端的电流或电压的大小,在输出端输出不同电压结果的电子元件。比较器常被用于模数转换电路中。
目录
[隐藏]
• 1 输入电压范围
• 2 运放电压比较器
• 3 专用电压比较芯片
• 4 关键参数
o
4.1 速度与功率
o
4.2 内置参考电压
o
4.3 时间连续与钟控
• 5 应用
o
5.1 过零比较器
o
5.2 弛张振荡器
o
5.3 电平转换器
o
5.4 模数转换器
• 6 参见
• 7 参考资料
• 8 外部链接
输入电压范围[编辑]
由于生产商不同,比较器正常工作时有不同的输入电压范围。例如早期的LM111系列和某些高速比较器如LM119系列的额定输入电压需要远小于供电电压(例如供电36V时输入电压范围为±15V)。[1]而轨至轨比较器只要求输入电压不大于供电电压。使用双电压供电(±V)时有:
使用单电压供电(+V,GND)时有:
某些型号(如LM139系列)的比较器在输入端带有PNP晶体管,这些比较器的输入电压可以低于供电电压最低值0.3V,但不能高于供电电压最大值。[2] LMH7322之类的超高速比较器的输入电压可以略高于(低于)工作电压的极大极小值(可以超过0.2V),这也被称作“超电源摆幅”。[3]比较器的输入电压范围一般取决于供电电压范围。
运放电压比较器[编辑]
简单的运放比较器
运算放大器采用差分输入,而且具有较高增益,这与比较器的特性相似,所以在实际应用中可以作为低性能比较器使用。[4]
理论上一个开环组态(无负反馈)的运放可以发挥低端比较器的作用。当正相输入端(V+)的电压高于反相输入端(V-)时,由于运放较高的开环增益,在输出端输出一个正向饱和电压+Usat。当反相输入端(V-)的电压高于正相输入端(V+)时,在输出端输出一个反向饱和电压-Usat。而对工作在线性段负反馈组态、由分离电压供电(±V)的运放而言,其传递函数可写作:
,这与非线性无负反馈的比较器不同。
实践中,与使用专用比较器相比使用运放比较器有以下缺点:
1. 运放被设计为工作在有负反馈的线性段,因此饱和的运放一般有较慢的翻转速度。大多数运放中都带有一个用于高频信号下压摆率的补偿电容。这使得运放比较器一般存在微秒级的传播延迟,与之相比专用比较器的翻转速度在纳秒量级。
2. 运放没有内置迟滞电路,需要专门的外部网络以延迟输入信号。
3. 运放的静态工作点电流只有在负反馈条件下保持稳定。当输入电压不等时将出现直流偏置。
4. 比较器的作用为数字电路产生输入信号,使用运放比较器时需要考虑与数字电路接口的兼容性。
5. 多节运放的不同频率间可能产生干扰。
6. 许多运放的输入端有反向串联的二极管。运放两极的输入一般是相同的,这不会造成问题。但比较器的两极需要接入不同的电压,这就可能导致意想不到的二极管的击穿。
专用电压比较芯片[编辑]
一些电压比较芯片
一般而言,专用电压比较芯片用作比较器比通用的运放速度快。许多专用比较器还集成有内置标准参考电压、可调延迟和时钟脉冲门控输入等功能。
专用电压比较芯片(如LM339)被设计为可以与数字逻辑电路(TTL或CMOS)的接口相连,输出端是用来表征真实信号的二进制数据。
关键参数[编辑]
比较器都是用于两个电压的比较,但在实际使用中还要考虑一些技术参数:
速度与功率[编辑]
比较器的速度与消耗功率直接相关。高速比较器的晶体管有较大的纵横比,因此也需
[5]在实际应用中,要消耗更多功率。一般根据具体需求选择比较器。例如UCSP封装或DFN
或SC70封装的比较器如MAX9027、LTC1540、LPV7215、MAX9060和MCP6541适用于低功耗的便携设备。而用于构建高速时钟信号的弛张振荡器一般使用纳秒级延迟的ADCMP572 (CML输出)、LMH7220 (LVDS 输出)、MAX999 (CMOS output / TTL 输出)、LT1719 (CMOS 输出/ TTL 输出)、MAX9010 (TTL 输出)和MAX9601 (PECL 输出)等高速比较器。
内置参考电压[编辑]
比较器一般被用于输入电压与给定参考电压的比较。大多数厂商都在生产的芯片中集成了参考值。将参考电压集成在芯片上的设计可以节省空间,同时电流还小于外接参考电
[6] 带有参考电压的芯片包括:压的比较器。MAX9062(参考电压200 mV )、LT6700(参
考电压400 mV)、ADCMP350(参考电压600mV)、MAX9025(参考电压1.236V)、MAX9040(参考电压2.048V)、TLV3012(参考电压1.24V)和TSM109(参考电压2.5V)。
时间连续与钟控[编辑]
低功耗CMOS钟控比较器
时间连续比较器持续不断地根据输入的信号输出“0”或“1”的结果,且随着输入信号的改变迅速改变。但是许多实际设计如数模转换和内存中只需要在指定的情况下输出。通过时钟控制或时钟触发方式让比较器按照固定的时间间隔工作,可以使比较器达到更高的精度同时消耗更低功率。当时钟处于高电平时,比较器处于时钟再生模式,对输入信号进行处理,给出强信号;当时钟位于低电平时,比较器进入复位模式。[7] 这与没有复位模式,只能一直给出弱信号的时间连续比较器相反。
应用[编辑]
过零比较器[编辑]
过零比较器被用于检测一个输入值是否是零。原理是利用比较器对两个输入电压进行比较。两个输入电压一个是参考电压Vr,一个是待测电压Vu。一般Vr从正相输入端接入,Vu从反相输入端接入。根据比较输入电压的结果输出正向或反向饱和电压。当参考电压已知时就可以得出待测电压的测量结果,参考电压为零时即为过零比较器。
用比较器构造的过零比较器存在一定的测量误差。当两个输入端的电压差与开环放大倍数之积小于输出阈值时探测器都会给出零值。例如,开环放大倍数为106,输出阈值为6v时若两输入级电压差小于6微伏探测器输出零。这也可以被认为是测量的不确定度。[8]
弛张振荡器[编辑]
比较器可以用于构造弛张振荡器,其中同时应用到了正反馈和负反馈。正反馈是一个施密特触发器,这样组成了一个多谐振荡器。而RC电路在其中增加了负反馈,导致电路开始自发振荡,使整个电路从锁存器变成了弛张振荡器。[9]
电平转换器[编辑]
使用漏极开路的比较器(例如LM393、 TLV3011和MAX9028)可以构造电平转换器,用于改变信号电压。选择适当的上拉电压可以灵活地选择转换的电压值。例如使用MAX972比较器可以把±5V的信号转换成3V信号。[6]
模数转换器[编辑]
比较器的作用是比较一个输入信号是否高于某一给定值,因此可以将输入的模拟信号
转成二进制的数字信号。包括ΔΣ调制在内的几乎所有的数模转换器都含有比较器,用于对输入的模拟信号进行量化。
103
电压比较器编辑
本词条缺少信息栏、名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧!
电压比较器它可用作模拟电路和数字电路的接口,还可以用作波形产生和变换电路等。利用简单电压比较器可将正弦波变为同频率的方波或矩形波。
目录
1简介
2工作原理
3功能作用
4运放
5芯片比较
1简介编辑
电压比较器是对输入信号进行鉴别与比较的电路,是组成非正弦
波发生电路的基本单元电路。
常用的电压比较器有单限比较器、滞回比较器、窗口比较器、三态电压比较器等。
LM339的引脚图如右图:
2工作原理编辑
电压比较器可以看作是放大倍数接近“无穷大”的运算放大器。
电压比较器的功能:比较两个电压的大小(用输出电压的高或低电平,表示两个输入电压的大小关系):
当”+”输入端电压高于”-”输入端时,电压比较器输出为高电平;
当”+”输入端电压低于”-”输入端时,电压比较器输出为低电平;
可工作在线性工作区和非线性工作区。
工作在线性工作区时特点是虚短,虚断;
工作在非线性工作区时特点是跳变,虚断;
由于比较器的输出只有低电平和高电平两种状态,所以其中的集成运放常工作在非线性区。从电路结构上看,运放常处于开环状态,又是为了使比较器输出状态的转换更加快速,以提高响应速度,一般在电路中接入正反馈。
3功能作用编辑
简单的电压比较器结构简单,灵敏度高,但是抗干扰能力差,因此我们就要对它进行改进。改进后的电压比较器有:滞回比较器和窗口比较器。
4运放编辑
是通过反馈回路和输入回路的确定“运算参数”,比如放大倍数,反馈量可以是输出的电流或电压的部分或全部。而比较器则不需要反馈,直接比较两个输入端的量,如果同相输入大于反相,则输出高电平,否则输出低电平。电压比较器输入是线性量,而输出是开关(高低电平)量。一般应用中,有时也可以用线性运算放大器,在不加负反馈的情况下,构成电压比较器来使用。
5芯片比较编辑
所有的运算放大器。常见的有LM324 LM358 uA741 TL081\\2\\3\\4 OP07 OP27,这些都可以做成电压比较器(不加负反馈)。LM339、LM393是专业的电压比较器,切换速度快,延迟时间小,可用在专门的电压比较场合,其实它们也是一种运算放大器