二面角
1.二面角的计算:1)定义法;2)三垂线定理法;3)垂面法;4)面积射影法;
例1、已知P是二面角
BPMBPN45,例2、已知P为锐二面角角
l
的度数是多少。
例3、已知二面角
l
成角
,则必有(
(A)sin
sinsin(C)cos
cos
sin
AB棱上一点,过P分别在
、
内引射线PM,PN,且
MPN
60,求此二面角的度数。
l棱上的点,PQ,PQ与l成45,与成30,则二面
的度数为,在面内有一条射线AB与棱l成锐角,与面
(B)sinsincos(D)cos
cos
cos
1
)
例4、在
120的二面角
l
的面、内分别有A、B两点,且A、B到棱l的距离
AC、BD分别长2、4,AB=10,求:(1)直线AB与棱l所成角的正弦值。(2)直线AB与平面
所成角的正弦值。
例5、已知二面角MN上,AB与
MN
为60,A
,BMCB
,BC为AB在
上的射影,且C在棱
所成角为
60,且AC5,45,求线段AB的长。
例6、已知二面角
DC
成
的度数为
,A,B,ADC的面积为S,且DC=m,
ABDC,AB与平面30角,当
变化时,求
DBC面积最大值。
2
例7、已知C是以AB为直径的圆周上的一点,求二面角A-PB-C的正弦值。
ABC30,PA面ABC,PBA45,
例8、在正方体ABCD
A1B1C1D1中,利用cos
S射影S
解下列各题
1)P、Q分别为A1A,AB的中点,求平面2)求二面角C1
C1PQ与底面ABCD所成角的余弦值
BD1C的大小;
D1
B1M
C1的余弦值。
3)M是棱BC的中点,求二面角
3
例9、已知D、E分别是边长为将三角形ADE折起,是二面角到BC边距离最短?最短是多少?
a的等边三角形ABC的边AB、AC上的点,DE//BC,现沿DE
A
A-DE-B成60度角,当DE在什么位置时,使折起后的顶点
例10、等腰Rt
,ADC和RtBCA有公共边AC
BD=BC?
ADCBCA90,ABC60,
以AC为棱折起多少度的二面角时,有
4
两个平面垂直
1、两个平面垂直的证明1)定义2)判定定理
2、两个平面垂直的性质
例1、已知ABCD为矩形,E为半圆CED上一点,且平面1)求证DE是AD与BE的公垂线
2)若AD=DE=AB,求AD与BE所成角的大小。
ABCD平面CDE
1
2
例2、等腰三角形
ABC的底BC=42,高AD=1,现沿AD将
ABD折起,使二面角B-AD-C
为60度,求此时AB与面ACD所成角的正弦值。
例3、在空间四边形ABCD中,已知AB=BD=DC=CA,M,N,P,Q分别是CD,DB,BA,AC的中
KAD平面PQMN
点,K为BC中点,求证:平面
5
例4、在正方体ABCD
A1B1C1D1中,已知P,Q,R,S分别是A1D1,A1B1,AB,BB1的中点,
求证:平面PQS平面B1RC.
例5、已知PA矩形ABCD所在平面,M,N分别是AB,PC的中点
1)求证,MNAB
2)若平面PDC与平面ABCD成45度角,求证:平面
MND平面PDC
例6、已知直角三角形ABD和等腰直角三角形CBD所在平面互相垂直,且
ADBDBC90,在AB上取一点P,当P在什么位置时,平面
PCD与平面BCD成60
度的二面角?
6
例7、已知Rt三角形ABC的两直角边AC=2,BC=3,P是斜边AB上的点,以CP棱折成直二面角A-CP-B,若折后AB=7,试求二面角
P-AC-B的余弦值。
例8、M,N分别是正方体
ABCDA1B1C1D1面对角线A1B,B1D上的点,且
A1M
1
A1B,B1N31
B1D1,求证MN是异面直线A1B,B1D的公垂线。3
7