课时分层作业(十一) 等差数列前n项和的综合应用
(建议用时:60分钟)
[基础达标练]
一、选择题
1.已知数列{an}的前n项和Sn=n2,则an等于( )A.n C.2n+1
B.n2D.2n-1
D [当n=1时,a1=S1=1,当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1,又a1=1适合an=2n-1,所以an=2n-1.]
2.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( )A.5C.3
C [由题意得S偶-S奇=5d=15,∴d=3.
或由解方程组Error!求得d=3,故选C.]
3.已知等差数列的前n项和为Sn,若S13<0,S12>0,则此数列中绝对值最小的项为( )A.第5项C.第7项
2
B.第6项D.第
12a1+a12
C [由题知,S13=13a7<0,S12=
=6(a6+a7)>0,所以a7<0,a6+a7>0,所以B.4D.2
a6>-a7=|a7|,所以a7绝对值最小.]
→→→OBOAOC4.已知等差数列{an}的前n项和为Sn,若 =a1 +a200 ,且A,B,C三点共线(该直线不过点O),则S200等于( )
A.100C.200
A [A,B,C三点共线⇔a1+a200=1,200
∴S200=2(a1+a200)=100.]
B.101D.201
S41S8
5.已知等差数列{an}的前n项和为Sn,且S8=3,那么S16的值为( )
1A.81C.9
1B.33D.10
D [设S4=m,则S8=3m,由性质得S4、S8-S4、S12-S8,S16-S12成等差数列,
S83m3
S4=m,S8-S4=2m,所以S12-S8=3m,S16-S12=4m,所以S16=10m,∴S16=10m=10.]
二、填空题
6.已知数列{an}的前n项和Sn=n2+2n,则数列{an}的通项公式an=________.2n+1 [当n=1时,a1=S1=3.当n≥2时,
an=Sn-Sn-1=n2+2n-(n-1)2-2(n-1)
=2n+1.
因为n=1时,a1=3,也满足an=2n+1,所以an=2n+1.]
7.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [∵a24=0,∴a1<0,a2<0,…,a23<0,故S23=S24最小.]
8.设Sn为等差数列{an}的前n项和,若a4=1,S5=10,则当Sn取得最大值时,n的值为________.
4或5 [由Error!解得Error!
∴a5=a1+4d=0,∴S4=S5同时最大.∴n=4或5.]三、解答题
9.设Sn为等差数列{an}的前n项和,若S3=3,S6=24,求a9.[解] 设等差数列的公差为d,则
3×2
S3=3a1+2d=3a1+3d=3,即a1+d=1,6×5
S6=6a1+2d=6a1+15d=24,即2a1+5d=8.由Error!解得Error!
故a9=a1+8d=-1+8×2=15.
10.已知数列{an}的各项均为正数,其前n项和为Sn,且满足
a1=1,an+1=2Sn+1,n∈N+.
(1)求a2的值;
(2)求数列{an}的通项公式.[解] (1)∵a1=1,an+1=2Sn+1,∴a2=2S1+1=2a1+1=3.
(2)法一:由an+1=2Sn+1,得Sn+1-Sn=2Sn+1,故Sn+1=(Sn+1)2.
∵an>0,∴Sn>0.∴Sn+1=Sn+1.
∴数列{Sn}是首项为S1=1,公差为1的等差数列.∴Sn=1+(n-1)×1=n.∴Sn=n2.
当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1,又a1=1适合上式,∴an=2n-1.
法二:由an+1=2Sn+1,得(an+1-1)2=4Sn,当n≥2时,(an-1)2=4Sn-1,
∴(an+1-1)2-(an-1)2=4(Sn-Sn-1)=4an.
∴an+
21-a2n-2an+1-2an=0,即(an+1+an)(an+1-an-2)=0.∵an>0,∴an+1-an=2.
∴数列{an}从第2项开始是以a2=3为首项,公差为2的等差数列,∴an=3+2(n-2)=2n-1(n≥2).∵a1=1适合上式,∴an=2n-1.
[能力提升练]
1.已知等差数列{an}的前n项和为Sn,S4=40,Sn=210,Sn-4=130,则n=( A.12B.14C.16
D.18
B [Sn-Sn-4=an+an-1+an-2+an-3=80,
S4=a1+a2+a3+a4=40,
所以4(a1+an)=120,a1+an=30,
na1+an
由Sn=
2
=210,得n=14.]
2.已知数列{an}的前n项和Sn=n2-9n,第k项满足5D.6B [∵an=Error!
∴an=2n-10.由5<2k-10<8,得7.53.在等差数列{an}中,a10<0,a11>0且a11>|a10|,则满足Sn<0的n的最大值为________.19 [因为a10<0,a11>0,且a11>|a10|,所以a11>-a10,a1+a20=a10+a11>0,
20a1+a20
所以S20=
2
>0.
)又因为a10+a10<0,
19×a10+a10
所以S19=
2
=19a10<0,
故满足Sn<0的n的最大值为19.]
n+1
4.已知{an}的前n项和为Sn,且满足a1=1,Sn=2an,则{an}的通项公式为________.
an=n(n∈N+) [由已知2Sn=(n+1)an,
∴2Sn-1=nan-1(n≥2),
两式相减,得2an=(n+1)an-nan-1,即(n-1)an=nan-1,
anna22a33a44ann∴an-1=n-1(n≥2),从而可得a1=1,a2=2,a3=3,…,an-1=n-1(n≥2),
以上各式相乘可得an=na1=n(n≥2).又a1=1也适合上式,∴an=n(n∈N+).]
5.若等差数列{an}的首项a1=13,d=-4,记Tn=|a1|+|a2|+…+|an|,求Tn.[解] ∵a1=13,d=-4,∴an=17-4n.
当n≤4时,Tn=|a1|+|a2|+…+|an|=a1+a2+…+annn-1
=na1+
2
nn-1
2
×(-4)
d=13n+
=15n-2n2;
当n≥5时,Tn=|a1|+|a2|+…+|an|=(a1+a2+a3+a4)-(a5+a6+…+an)=S4-(Sn-S4)=2S4-Sn13+1×4=2×
2
-(15n-2n2)
=2n2-15n+56.∴Tn=Error!