您好,欢迎来到华佗小知识。
搜索
您的当前位置:首页《机器人学》试题

《机器人学》试题

来源:华佗小知识
2019-2020学年第二学期硕士研究生

《机器人学》试题

和本试题答案。

(一). We are given a single frame {A} and a position vectorAPdescribed in this frame.

ˆˆby an angle φ, then rotating about YWe then transformAPby first rotating it aboutZAAby an angle θ. Determine the 3×3 rotation matrix operator, R(φ,θ), which describes this transformation.

(二). Given the following 3×3 matrix:

110 22

R121212121212(a)Show that it is a rotationmatrix.

(b)Determine a unit vector that defines the axis ofrotation and the angle (in degrees) of

rotation.

(c)What are the Euler parameters ε1,ε2,ε3,ε4 of R?

(三). Consider the following 2RP2R manipulator (figure courtesy of J. J. Craig):

(a) Draw a schematic of this manipulator, with the axes of frames {0} through {5}

labeled. Include all non-zero Denavit-Hartenberg parameters and the joint variables. Draw your schematic in the position where, as far as possible, the angles 𝜃𝑖 are in their zero positions.

(b) Write down the Denavit-Hartenberg parameters for this manipulator, in the form of a table:

1

i 1 2 3 4 5 𝑎𝑖−1 𝛼𝑖−1 𝑑𝑖 𝜃𝑖

(四). You are given that a certain RPR manipulator has the following transformation matrices,where {E} is the frame of the end effector.

c1s1s01c1T1000000c1c3c1s3s1L1c1s1d2scss00cLscd1313111120,T 310s3c300010010s1c1s3c1c3L1c1L2c1c3s1d2csss1cLsLsccd113311213120 ET0c3s3L2s30001Derive the basic Jacobian relating joint velocities to the end-effector’s linear and

angularvelocities in frame {0}.

(五). Consider the RRR manipulator shown here:

Note: in the figure, the numbers below the links represent the lengths.

(a) Find the DH parameters for this manipulator. Remember to assign the interior frames

of this manipulator using the conventions discussed in class. i 1 2 3 i1 i1 i di (b) Derive the forward kinematics,04T, of this manipulator.

2

(c) Find the basic Jacobian, J0, for this manipulator.

(d)Find1JV, the position Jacobian matrix expressed in frame {1}.

(e) Use the matrix that you found in part (d) to find the singularities (with respect to

linearvelocity) of this manipulator.

(f) For each type of singularity that you found in part (e), explain the physical

interpretation of the singularity, by sketching the arm in a singular configuration and describing theresulting limitation on its movement.

(六). Consider the following RRRR manipulator (image courtesy J. J. Craig):

It has the following forward kinematics and rotational Jacobian:

(a) Find the basic Jacobian 𝐽0 in the {0} frame, for the position q = [0, 900,−900, 0] .(q is the vector of joint variables.)

(b) A general force vector is applied to the origin of frame {4} and measured in frame {4}to be [0, 6, 0, 7, 0, 8]T . For the position in (a), determine the joint torques that staticallybalance it.

(c) Consider the same configuration as above. A screw driver is gripped in the end-̂effectorso that its tip is along 𝑍4 at a distance of 9 units of length from the origin of

frame {4}.What is the force and torque the screw driver tip applies when the same joint torquesthat were determined in part (b) are applied?

(七). In the rest of this problem set, we will walk through the process of finding the

T

3

equations ofmotion for a simple manipulator from the Lagrange formulation. Consider the RP spatialmanipulator shown below. The links of this manipulator are modeled as bars of uniformdensity, having square cross-sections of thickness h, lengths of L1 and L2, and total massesof m1 and m2, with centers of mass shown. Assume that the joints themselves are massless.

From the derivation in the Lecture Notes, we know that the equations of motion have theform:

MqqCqq2BqqqGq

where M is the mass matrix, C is the matrix of coefficients for centrifugal forces, B is thematrix of coefficients for Coriolis forces, and G is the vector of gravity forces.

(a) For each link i, we have attached a frame {Ci} to the center of mass (in this case, frame{2} is the same as {C2}). Compute kinematics for these frames: that is, calculate thematricesC0TandC02T.

For a two-link manipulator, the mass matrix has the form

TTTC1TC2Mm1JvJmJJJIJJI2J2 1v12v2v21112whereJvi is the linear Jacobian of the center of mass of link i, Ji is the angular

Civelocity of link i, and Ii is the inertia tensor of link i expressed in frame {Ci}.

1(b) Calculate 0Jv1and 0Jv2. (c) Calculate C1J1and C2J2.

(d) Calculate C1I1 and C2I2 in terms of the masses and dimensions of the links. You canuse the same formula that was given for a box of uniform density in Problem 2(b). Becareful which measurements you use along the axes.

(e) Calculate the mass matrix, Mq. To make your algebra easier, leave the inertia tensorsin symbolic form until the end, i.e.

4

Ixx1C1I1000Iyy1000 Izz1Now we need to calculate the centrifugal and Coriolis forces. We will derive the form

directly.

(f) Beginning with the equation in the Lecture Notes,

TMqq1Vq,qMqT12Mqqmanipulate this equation symbolically into the form

qq

2Vq,qCqqBqqqwhere C and B are matrices in terms of the partial derivatives mijk of the mass

matrix.Don’t actually substitute in your answer from part (e) into this equation yet: just leavethe elements of these matrices in mijk symbolic form.

(g) Using your answer to part (e), compute the matrices Cq and Bqin terms of themasses, dimensions, and configuration q of the manipulator. The last thing that remains is to derive the gravity vector Gq.

(h) Calculate, 0Gq, the gravity vector in frame {0}, in terms of the masses, the configuration q, and the gravity constant g (g is positive). Assume that gravity pulls thingsalong the -Z0 direction. Be careful with your signs.

(i) As a final step, use your answers to parts (e), (h) and (i) to write out the equations ofmotion as two great big equations:

1f1q,q,q

2f2q,q,q

+ 20x+ 25x = f. (八). Consider the 1-DOF system described by the equation of motion, 4x(a) Find the natural frequency ωn and the natural damping ratio ζn of the natural (passive)

system (f = 0). What type of system is this (oscillatory, overdamped, etc.) ?

(b) Design a PD controller that achieves critical damping with a closed-loop stiffness kCL

 - kpx, and determine the gains kv and kp. Assume = 36. In other words, let f =kvxthat the desired position is xd = 0.

) to Coulomb friction, (c) Assume that the friction model changes from linear (20x). Design a control system which uses a non-linear model-based portion 30sign(xwith trajectory following to critically damp the system at all times and maintain a

5

closed-loop stiffness of kCL = 36. In other words, letffand

dkvxd)k(xfx. Note that f is p(xxd) Then, find f, α, β, f, kp and kvan m-mass control, and f is a unit-mass control. Use the definition of error, exxd.

e0) error of the (d) Given a disturbance force fdist = 4, what is the steady-state (esystem in part (c)? (九). For a certain RR manipulator, the equations of motion are given by

4c21c21c21s(22112212)= +2s2122(a) Assume that joint 2 is locked at some value θ2 using brakes and joint 1 is controlled

with a PD controller, 1401400(11d). What is the minimum and maximum inertia perceived at joint 1 as we vary θ2? What are the corresponding closed-loop frequencies? (b) Still assuming that joint 2 is locked, at what values of θ2 do the minimum and

maximum damping ratios occur? What are the minimum and maximum damping ratios?

(c) Now assume that both joints are free to move, and that this system is controlled by a

partitioned PD controller, . Design a partitioned, trajectory-following con-troller (one that tracks a desired position, velocity and acceleration) which will

provide a closed-loop frequency of 10 rad/sec on joint 1 and 20 rad/sec on joint 2 and be critically damped over the entire workspace. That is, let

10kp10kvd(d)0k(d) 0kp2v2then find the matrices α and β and the vector τ, along with the necessary gains kviand kpi .

(d) If θ2 = 180◦, what is the steady-state error vector for a given disturbance torque, τdist

= [2 4]T ?

(十)机械臂运动路径设计问题

自1959年美国的英格伯格和德沃尔制造出世界上第一台工业机器人“尤尼梅特”开始,近半个世纪以来,机器人的研制和应用以惊人的速度发展并取得长足的进步。当今世界,机器人的应用领域已十分广泛,包括工业生产、海空探索、医疗康复和军事活动等,此外,机器人已逐渐在医院、家庭和一些服务行业获得应用。从生产车间中的焊接机械手,到水下自治式机器人,从娱乐性的拳击机器人,到伊拉克战场上的无人驾驶机,机器人已经与我们的日常生活息息相关。

机器人通常分为关节式机器人(或称机械臂、机械手、机器人操作臂、工业机器人等)和移动式机器人。一般来说,前者具有更多的自由度,而后者的作业范围则更大一些。

6

以某型号机器人为例,其示意图见图1:

第五个自由度 第三个自由度± 138度 -133.5 ~120度 第二个自由度 ± 125度 第四个自由度± 270度 第六个自由度 ± 270度 第一个自由度 ± 180度

图1 机器人结构图

这种机器人一共有6个自由度,分别由六个旋转轴(关节)实现,使机器人的末端可以灵活地在三维空间中运动。为了便于分析和计算,我们对机器人结构进行简化,简化后的数据见图2和参数表1。这里用七条直线段表示机器人的七个连杆,连杆之间用所谓的旋转关节连接,已知AB=140mm,BC=255mm,CD=255mm,DE=65mm。根据旋转的方向分成两类关节,旋转轴分平行连杆的(如图1的自由度一、四、六,对应于图2中的F,G,H)和垂直连杆的(如图1的自由度二、三、五,对应于图2中的B,C,D)两种,前者如笔帽的转动方向,后者如摇柄的转动方向。每一个关节对应一个角度i,这个角度表示前一个连杆方向到后一个连杆方向转角(对于B,C,D),连杆方向为AB、BC、CD、DE,或者相对于初始位置的转角(对于F,G,H),假设机器人的

7

初始位置是在一个平面上的(y-z 平面)。为了使机器人运动得更加灵活允许关节的转角超过360°的。

图2:机器人的尺寸图

机器人关于六个自由度的每一个组合(1,2,3,4,5,6),表示机械臂的一个姿态,显然每个姿态确定顶端指尖的空间位置X:f()X。假定机器人控制系统只能够接收改变各个关节的姿态的关于连杆角度的增量指令(机器指令)P(1,2,3,4,5,6),使得指尖(指尖———图2中的E点,具有夹工具、焊接、拧螺丝等多种功能,不过在这里不要求考虑这方面的控制细节)移动到空间点X′,其中各个增量i只能取到-2, -1.9, -1.8, ┅,1.8, 1.9, 2这41个离散值(即精度为0.1°,绝对值不超过2°)。通过一系列的指令序列P1,P2,P3,,Pn可以将指尖依次到达位置X0,X1,┅,Xn,则称X0,X1,┅,Xn为从指尖初始位置X0到达目标位置Xn的一条路径(运动轨迹)。根据具体的目标和约束条件计算出合理、便捷、有效的指令序列是机器人控制中的一个重要问题。我们约定直角坐标系的原点设在图2的A点,z轴取为AB方向,x轴垂直纸面而y轴则在基座所固定的水平台面上。

1.根据市场需求,机械臂制造厂打算为他们的产品研发一个软件系统,能够直接将用户的运动命令自动转换成机器指令序列。即为这类机器人设计一个通用的算法,用来计算执行下面指定动作所要求的指令序列,并要求对你们算法的适用范围、计算效率以及你们的近似算法所造成的误差和增量i离散取值所造成的误差大小进行讨论(不考虑其他原因造成的误差):

①.已知初始姿态Φ0和一个可达目标点的空间位置(Ox, Oy, Oz),计算指尖到达目标点的指令序列。

②.要求指尖沿着预先指定的一条空间曲线x = x(s), y = y(s), z = z(s), a ≦ s ≦b 移动,计算满足要求的指令序列。

8

③.在第①个问题中,假设在初始位置与目标位置之间的区域中有若干个已知大小、形状、方向和位置的障碍物,要求机械臂在运动中始终不能与障碍物相碰,否则会损坏机器。这个问题称机械臂避碰问题,要求机械臂末端在误差范围内到达目标点并且整个机械臂不碰到障碍物(机械臂连杆的粗细自己设定)。

2. 应用你的算法就下面具体的数据给出计算结果,并将计算结果以三组六维的指令序列(每行6个数据)形式存放在Excel文件里,文件名定为

answer1.xls,answer2.xls和answer3.xls。

假设在机械臂的旁边有一个待加工的中空圆台形工件,上部开口。工件高180mm,下底外半径168mm,上底外半径96mm,壁厚8mm。竖立地固定在xy-平面的操作台上,底部的中心在 (210, 0, 0)。

①.要求机械臂(指尖)从初始位置移动到工具箱所在位置的 (20,-200, 120) 处,以夹取要用的工具。

②.如果圆台形工件外表面与平面 x = 2 z 的交线是一条裂纹需要焊接,请你给出机械臂指尖绕这条曲线一周的指令序列。

③.有一项任务是在工件内壁点焊四个小零件,它们在内表面上的位置到xy平面的投影为(320,-104)、(120,106)、(190,-125)和

(255,88)。要求机械臂从圆台的上部开口处伸进去到达这些点进行加工,为简捷起见,不妨不计焊条等的长度,只考虑指尖的轨迹。

3.制造厂家希望通过修改各条连杆的相对长度以及各关节最大旋转角度等设计参数提高机械臂的灵活性和适用范围。请根据你们的计算模型给他们提供合理的建议。

关节 变量符号i 初始位置变量范围 ± 180 ± 125 ± 138 ± 270 -120 i 1 0 -90 0 0 -90 0 1 2 3 4 5 6 2 3 4 5 6 +133.5 ± 270 参数表1 初始姿态Φ0和动作范围

9

(十一) 《机器人学》的课程内容蕴含丰富的马克思主义基本原理和*新时代中国特色社会主义思想。请同学们复习课程内容,整理出本课程体现马克思主义基本原理和*新时代中国特色社会主义思想的相关知识点,并填写下表: 所体现的马克思主义基马克思主义基本原理和本原理和*新时代*新时代中国特色对你有何启知识点内容 中国特色社会主义思想社会主义思想如何体现发和帮助 的具体内容 在知识点中 立足实践需要在实践中不断完善机器科学研究要有强烈的问要学会在实研究理论 人的性能,使其满足在题意识,在实践中发现践中检验理不同工作环境下的运行 问题、解决问题 论,提高自己 结构性原则 对机器人的结构设计要无规矩不成方圆,合理在今年后的秉持合理有效的理念,的结构设计是机器人得科研道路中要严格遵循结构设计原以良好运行的前提 更加注重结则 构性和层次性原则 社会历史过程对于机器人的研究,起事物的发展要遵循基本对任何事物的客观规律性 初就是在人或动物的基的客观规律,这一点在的研究要注础上进行模拟仿真,依机器人的研究中同样适意观察其本据客观规律,逐渐得以用,正是一代又一代的身的规律,这实现的过程 科学家门不断总结规样常会起到律,不断进步才使得机事半功倍的器人逐渐由理想变为现效果 实 研究过程的前任何事物的发展都不是在一代又一代人的努力做事要有恒进性和曲折性 一帆风顺的;机器人学下,机器人这门研究在心,过程总是同样如此,在研究的道不断的深化,不断的进曲折的,只要路上布满了障碍和曲步,并不断地与人们的努力,结果总折,但总的来说呈螺旋生活相结合 是满意的 上升的趋势 主观能动性 在研究机器人的过程人们能动地认识客观世在日常生活中,科研人员不断地发界并在认识的指导下能中要积极发挥其主观能动性,不断动地改造客观世界。在挥我们的主思考总结,敢于试错,实实践的基础上使二者统观能动性,世现了机器人的从无到一起来,即表现出人区上无难事,只有,从有到强 别于物的主观能动性 怕有心人 10

…… …… …… …… (十二)《机器人学》课程还有哪些内容体现了数学思想,是什么数学思想?具体如何体现,请列表说明。 1)牛顿欧拉公式:

𝐹𝑒𝑥𝑡𝑗 = 𝑀𝑗𝑉𝑗 + 𝛽𝑗

𝑈𝑗

𝑉𝑗=Ω,这是连杆j相对于惯性系的速度和角速度组成的六维向量(表示在j系下)。

𝑗

𝑗

𝐻𝑗+1,代表的就是一个6维的变换矩阵,将j+1系下的力变换到j系下。

𝐹𝑒𝑥𝑡𝑗 为连杆受到的外力、外力矩在j系下的表示。

𝑀𝑗=[

𝑚Ω𝑗×𝑈𝑗+𝑚Ω𝑗×(Ω𝑗×𝑟𝑗)𝛽𝑗=[𝑚𝑟×(Ω×𝑈)+Ω×𝐼Ω] 𝑗𝑗𝑗𝑗𝑗

𝑗

𝑚𝐼3×3

𝑚𝑟̂𝑗−𝑚𝑟̂𝑗

] 𝐼𝑗

2)雅可比矩阵

雅可比矩阵对于机器人运动学逆解、静力学分析和动力学分析有重要意义,是机器人位置\\力控制的基础。

(a) 后置法雅可比矩阵求法(常用); (b) 前置法雅可比矩阵求法。

3)高斯消元法:把增广矩阵化为行阶梯型矩阵;

4)转移矩阵:把坐标从一组基到另一组基的变换矩阵;

5)概率统计也是机器学习的基础。常用的概率统计概念(如:随机变量、离散随机变量、连续随机变量最大似然估计、最大后验估计等)都在机器人学中有体现到。

6)最优化方法被广泛用于机器学习模型的训练。机器学习中常见的几个最优化概念:凸/非凸函数、梯度下降、随机梯度下降、原始对偶问题。

11

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo0.cn 版权所有 湘ICP备2023017654号-2

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务