您好,欢迎来到华佗小知识。
搜索
您的当前位置:首页1+e的x次方分之一的不定积分

1+e的x次方分之一的不定积分

来源:华佗小知识
1+e的x次方分之一的不定积分

1+e的x次方分之一的不定积分是:∫1/(1+e的x次)dx=∫e的-x次/(1+e的-x次)dx同乘e的-x次=-∫1/(1+e的-x次)d(1+e的-x次)=-ln(1+e的-x次)+C。 不定积分计算注意:

凑微分法在考研里面也叫第一类换元法,但是叫凑微分其实更能说明本质特征,因为它不是真正意义上的换元。

求导后得到的,只是原式的一部分,并不是全部!因此,这时候就需要凑了,即上下同时乘以(除以)相同的因式,用恒等变形的办法以达到凑微分的目的。 不定积分的意义:

设G(x)是f(x)的另一个原函数,即∀x∈I,G'(x)=f(x),于是[G(x)-F(x)]'=G'(x)-F'(x)=f(x)-f(x)=0。

由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C’(C‘为某个常数)。

这表明G(x)与F(x)只差一个常数,因此,当C为任意常数时,表达式F(x)+C就可以表示f(x)的任意一个原函数。也就是说f(x)的全体原函数所组成的集合就是函数族{F(x)+C|-∞

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo0.cn 版权所有 湘ICP备2023017654号-2

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务