您好,欢迎来到华佗小知识。
搜索
您的当前位置:首页On detection of emerging anomalous traffic patterns using GPS data

On detection of emerging anomalous traffic patterns using GPS data

来源:华佗小知识
Data&KnowledgeEngineering87(2013)357–373

ContentslistsavailableatScienceDirect

Data&KnowledgeEngineering

journalhomepage:www.elsevier.com/locate/datak

OndetectionofemerginganomaloustrafficpatternsusingGPSdata

LinseyXiaolinPanga,d,⁎,SanjayChawlaa,WeiLiub,YuZhengcabcdSchoolofInformationTechnologies,UniversityofSydney,Australia

Dept.ofComputerScienceandSoftwareEngineering,UniversityofMelbourne,AustraliaMicrosoftResearchAsiaNICTA,Sydney,Australia

articleinfoabstract

Theincreasingavailabilityoflarge-scaletrajectorydataprovidesusgreatopportunitytoexplorethemforknowledgediscoveryintransportationsystemsusingadvanceddataminingtechniques.Nowadays,largenumberoftaxicabsinmajormetropolitancitiesareequippedwithaGPSdevice.Sincetaxisareontheroadnearly24haday(withdriverschangingshifts),theycannowactasreliablesensorstomonitorthebehavioroftraffic.Inthisarticle,weuseGPSdatafromtaxistomonitortheemergenceofunexpectedbehaviorintheBeijingmetropolitanarea,whichhasthepotentialtoestimateandimprovetrafficconditionsinadvance.Weadaptlikelihoodratioteststatistic(LRT)whichhavepreviouslybeenmostlyusedinepidemiologicalstudiestodescribetrafficpatterns.TothebestofourknowledgetheuseofLRTintrafficdomainisnotonlynovelbutresultsinaccurateandrapiddetectionofanomalousbehavior.

CrownCopyright©2013PublishedbyElsevierB.V.Allrightsreserved.

Availableonline18May2013Keywords:Datamining

MiningmethodsandalgorithmsSpatial/temporaldatabases

1.Introduction

WiththeincreasingavailabilityofhighresolutionGPStracesfromvehiclesinlargemetropolitanareas,thereisanopportunitytoinfersophisticatedpatternsandtrendswhichtillnowhasnotbeenpossible[1].Theinferredtrendscanthenbeusedasinputintopolicyplanningacrossavarietyofdomainsincludingtrafficmanagement,urbanplanningandenvironmentalmonitoring.

Inthisarticle,weapplystatisticalapproachonmassivetaxilocationtraces,whichareexploredtoextracttheoutliertrafficpatternintransportationsystems.WeknowthousandsoftaxisplytheroadsoflargemetropolitancitieslikeNewYork,London,BeijingandTokyoeveryday.Mosttaxisareontheroad24hadaywithdriverschangingshifts.ManyofthesetaxisarenowequippedwithGPSandtheirspatio-temporalcoordinatesareavailable.Thusifacityispartitionedintoagridthenatagiventimewecanestimatethecountofthenumberoftaxisinthegridcells.Overtime,thecellcountswillsettleintoapatternandvaryperiodically.Forexample,duringmorningrushhourmoretaxiswillbeconcentratedinbusinessdistrictsthanatothertimesoftheday.Similarlytaxicountsnearairportswillsynchronizewithaircraftarrivalanddepartureschedules.Occasionallytherewillbeadepartureofthecellcountsfromperiodicbehaviorduetounforeseeneventslikevehiclebreakdownsorone-timeeventslikebigsportingevents,fairsandconventions.

Ourobjectiveistoidentifycontiguoussetofcellsandtimeintervalswhichhavethelargeststatisticallysignificantdeparturefromexpectedbehavior.

Oncesuchregionsandtimeintervalshavebeendiscoveredthenexpertscanbeginidentifyingeventswhichmayhavecausedtheunexpectedbehavior.Thisinturncanhelpmakeprovisionstomanagefuturetrafficbehavior.Similarproblemsappearinmanyotherdomains.Forexample,governmenthealthcareagenciesareinterestedindetectingemergenceofdiseasepatternswhichdeviatefromexpectedbehavior.

⁎Correspondingauthorat:SchoolofInformationTechnologies,UniversityofSydney,Australia.

E-mailaddresses:qlinsey@it.usyd.edu.au(L.X.Pang),sanjay.chawla@sydney.edu.au(S.Chawla),wei.liu@unimelb.edu.au(W.Liu),yuzheng@microsoft.com(Y.Zheng).

0169-023X/$–seefrontmatter.CrownCopyright©2013PublishedbyElsevierB.V.Allrightsreserved.http://dx.doi.org/10.1016/j.datak.2013.05.002

358L.X.Pangetal./Data&KnowledgeEngineering87(2013)357–373

Thenumberofcontiguousregionsandtimeintervalsisverylarge.Forexample,ifthespatialgridcorrespondstoan×nmatrixandthereareTtimeintervals,thentherearepotentiallyO(n2T)spatio-temporalcellsandO(n4T2)cubicregions.1Thehugeamountofspatio-temporaldata,suchastaxicountacrossdifferentgridregionswithindifferenttimestepsfromminutestohourstodays,requiresanefficientapproachtodetectspatial–temporaloutliersforpredictingabnormaleventsandimplementingtrafficcontrolmeasuresinadvance.Forthismotivation,weapplytheroadnetworkofBeijingandpartitionitintogridtofindoutliers(Fig.1).

Inapaperofparticularrelevancetoourwork,theLRTframework[2]statesthecomputationcostforsinglestatisticvalueaswellasenumeratingallthespatialregionstobeexpensive.Toavoidperformingstatisticalcomputationsforeveryregion,itprovidesapruningstrategybasedonclassicallikelihoodteststatistic.Inthisarticle,weextendtheLRTframeworktodetectabnormaltrafficpattern.Morespecifically,thecontributionsare:••••

Ageneralandefficientpatternminingapproachforspatio-temporaloutlierdetectionisproposed.Persistentandemergingoutlierdetectionstatisticalmodelsareprovided.

Wegiveourproofthattheupper-boundingstrategyofLRTisapplicableto“persistent”and“emerging”outlierdetectionmodels.Experimentsareconductedonsyntheticdatatoverifytheextendedpruningapproachandshowthesignificantimprovementofsearchingwhendatasetsizeislarge;wealsoperformedrealdatavalidationinthedetectionofemergingtaxicounttrendduetosomemajorevents.

Therestofthisarticleisorganizedasfollows.Section2reviewsrelatedwork.Section3illustratesthestatisticalbackgroundandupper-boundingmethodologyforpruning.Section4proposesourapproach,inwhichthestatisticaldetectionmodelsareprovided.Theupper-boundingandpruningmechanisminthisframeworkbasedonourproofarepresentedinSection5.Computationalcomplexityisalsodiscussedinthissection.Section6showstheexperimentsandcasestudies.Finally,Section7concludesthisworkandSection8givesthefuturework.2.Relatedwork2.1.Trafficoutliers

Recently,quiteafewresearchprojectsstartedtofindouttrafficpatternsandanomaliesusingtaxitrajectories[3–6].Forinstance,toprovideauserwiththefastestroutetoagivendestinationatagivendeparturetime,Yuanetal.[4]minesmartdrivingdirectionsfromhistoricalGPStrajectoriesofalargenumberoftaxis.Itproposesatime-dependentlandmarkgraphtomodelthepropertiesofdynamicroadnetworksandappliestwo-stageroutingalgorithmtofindtheefficientdrivingdirections.InanotherworkofYuanetal.[3],itpresentsacloud-basedsystemtoretrievethefastestdrivingroutesbasedontrafficconditionsanddriverbehavior.TheCloudbuildsamodelincorporatingdayoftheweek,timeofday,weatherconditions,andindividualdrivingstrategies.Usingthismodel,thesystempredictsthetrafficconditionsofafuturetimebyagivenrouteandperformsaself-adaptivedrivingdirectionserviceforaparticularuser.

Miningtrafficpatternisanimportantresearchapproach,butdetectingtheoutliersfrommaintrafficflowisalsomeaningful.Forinstance,whenatrafficincidentorjamhappens,trafficflowchangessuddenlyandthiswillbereflectedbyoutliers.Trafficincidentscanbedetectedthroughrecognizingoutliers.Suchunusualtrafficpatternreflectsabnormaltrafficstreamsonroadnetworksandprovidesuseful,importantandvaluableinformation.Unknownbutpotentiallyimportantpatternscanbeforecastbyanalyzingtheseoutliers.Therefore,thedetectionofoutliers/anomaliesfromtrajectorydatacanhelpinsensingabnormaleventsandplanfortheirimpacttoensuresmootherflowoftraffic.InLiuetal.'s[5]work,algorithmsarepresentedfordiscoveringspatio-temporaloutliersandcausalrelationships.Thediscoveryofrelationships,especiallycausalinteractions,amongdetectedtrafficoutliersisinvestigated.ChawlaandZhengetal.[7]furtherdiagnosedetectedtrafficanomaliesbystudyingthetrafficflows(paths)thatleadtoananomaly.InZhengetal.'s[6]work,itdetectsflawedurbanplanningusingtheGPStrajectoriesoftaxicabstravelinginurbanareas.Itfindsanomalouspatternsinacityusingtaxitrajectorieswhichprovidesadeeperunderstandingoftheflawedplanning.Althoughthesetwoapproachesareusedtodetecttrafficoutliers,theyaredifferentfromourworksincewedetecttrafficoutliersusingstatistical-basedapproachandwehaveadifferentdefinitionforabnormaltrafficpatterns.2.2.Outlierdetectionmethods

Tillnow,manyanomalydetectiontechniqueshavebeenspecificallydevelopedforcertainapplicationdomains,whileothersaremoregeneric.Thetechniquescanbecategorizedasclassification-based,distanced-based,clustered-based,andstatistical-based,etc.Inthesesurveys[8,9],theygivecomprehensiveandhigh-leveloverviewofdifferentoutlierdetectiontechniquesandsomeoftheirapplications.

Inthisarticle,wefocusonthestatistic-basedapproachtodetectspatio-temporaloutlier.Theunderlyingprincipleofanystatisticaloutlierdetectiontechniqueis:“Ananomalyisanobservationwhichissuspectedofbeingpartiallyorwhollyirrelevant

Inthiswork,n×nspatialgridandTtimeintervalsaremappedtoathree-dimensionalgrid.Theunitcellisintheshapeofacubeandeverysub-regioninthegridiscalledcubicregion.

1L.X.Pangetal./Data&KnowledgeEngineering87(2013)357–373359

(a) Road Network of Beijing(b) Grid Map

Fig.1.AnexampleofthetrafficnetworkofBeijing.Basedonthelongitudeandlatitude,theentirecityispartitionedintoagridmap.Sub-figure(a)ispartitionedintosub-figure(b).

becauseitisnotgeneratedbythestochasticmodelassumed”[10].Itisbasedonthekeyassumption:Normaldatainstancesoccurinhighprobabilityregionsofastochasticmodel,whileanomaliesoccurinthelowprobabilityregionsofthestochasticmodel.Statisticaltechniquesfitastatisticalmodel(usuallyfornormalbehavior)tothegivendataandthenapplyastatisticalinferencetesttodetermineifanunseeninstancebelongstothismodelornot.Instancesthathavealowprobabilityfromtheappliedteststatisticaredeclaredasoutliers.Scoringtechniquesareusedtoassignananomalyscoretoeachinstanceinthetestdatadependingonthedegreetowhichthatinstanceisconsideredananomaly.Usually,theoutputofsuchtechniquesisarankedlistofoutliers.Wemaychoosetoeitheranalyzethetopfewoutliersoruseacut-offthresholdtoselecttheoutliers.Bothparametricaswellasnon-parametrictechniqueshavebeenappliedtofitastatisticalmodel[11,12].Inourwork,weonlyconsidertheparametricanomalydetectiontechniquesbasedontheclassicallikelihoodratioteststatistic(i.e.LRT).

Inthedomainofspatio-temporalapplications,moststatisticoutlierdetectionapproachesproposedsofarareonpurelyspatialsearching[13–15].Evenwhenconsideringtimeaspect,mostoftheexistingworkonspatio-temporaloutlierdetectiontreatsthetimedimensionsimply,eitherbyapplyingpurelyspatialoutlierdetectionmethodsateachtimestep,orbytreatingtimeasanotherspatialdimensionandthusapplyingspatialoutlierdetectioninonemoredimensionalspace(originalspatialdimensionsplustimedimension).Thedisadvantageofthefirstapproachisthatbyonlyexaminingonetimestepofdataatatime,moreslowlyemergingoutliersmaynotbedetected.Thedisadvantageofthesecondapproachisthatlessrelevantoutliersmaybedetected:thoseoutliersthathaveconstantlyexistedforalongtime,ratherthanthosethatarenewlyemerging[16,17].Inourfollowingwork,wedifferentiatetemporalpropertywithspatialproperty.Morespecifically,weinvestigatethespatialregionintwodifferentscenariosinwhichthetemporalpropertyispersistentorotherwiseemerging.Persistenttemporaldatareferstodatawhereitstemporalpropertyisconsistentovertime.Emergingtemporaldatareferstothedatawhereitstemporalpropertyisnon-decreasingovertime.Thesetwoconceptsprovidemoreinformationforpracticaloutlierdetections.

Amongthevariousstatisticalmethodsfordiscoveringoutlier,thespatialandspace–timescanstatistic,introducedbyKulldorff[18–21],hasbeenthemostwidelyadopted.However,itisoriginallydesignedforPoissonandBernoullidata.Lateron,thedifferentvariationsofordinal,exponentialandnormalmodelsareproposed[22–25].Theyhavebeenimplementedinthesoftware(SaTScan)[26].Inthespace–timescanstatisticofKulldorff,thekeyparameterisassumedtobeconsistentovertime.Thetechniquesimplyappliestimeasonemoredimension.Nielletal.[16]pointoutthedistinctfeatureoftimeaspectandproposeamodifiedteststatistictodetectlocalizedandglobalizedemergingcluster.Tangoetal.[27]alsoproposeaspace–timescanstatisticbasedonnegativebinomialmodelbytakingintoaccountthepossibilityofnonnegligibletime-to-timevariationofPoissonmean.Wuetal.[2]proposeagenericframeworkcalledLRTforanyunderlyingstatisticalmodel.Itusestheclassiclikelihoodratiotest(LRT)statisticasascoringfunctiontoevaluatethe“anomalousness”ofagivenspatialregionwithrespecttotherestofthespatialregion.Moreoveragenericpruningstrategywasproposedtogreatlyreducethenumberoflikelihoodratiotests.However,itisusedforspatialanomalydetectionwithoutconsideringthetemporalproperty.Liuetal.[5]proposeanapproachtodiscovercasualrelationshipsamongspatio-temporaloutliers.Here,weonlyfocusondetectingspatial–temporaloutliers.

2.3.Performanceissue

Furthermore,performanceissueisalsoabigprobleminspatialorspatio-temporaloutlierdetection.Thenaivecomputationofspatialoutlierdetectionisverytime-consuming,variousstrategieshavebeenproposedtospeeduptheprocess[18,28–30].

360L.X.Pangetal./Data&KnowledgeEngineering87(2013)357–373

TheseexistingmethodsintheliteraturearebasedonKulldorff'sspatialscanstatisticandtheyaimtoactuallyavoidconsideringallO(n4)rectangularareas.Alsotheyareonlyapplicabletothoserelativelysimpledensitymeasuresthatareconvexormonotonicwithrespecttotheratioofzonepopulationovertheentirepopulationandtheratioofzone'seventcountovertheentireeventcount.TheLRTframeworkstatesthecomputationcostforsinglestatisticvalueaswellasenumeratingallthespatialregionstobeexpensive[2].Toavoidperformingstatisticalcomputationsforeveryregion,itprovidesapruningstrategybasedonclassicallikelihoodteststatistic.Inthisarticle,weextendittobeapplicabletopersistentandemergingoutlierdetectionscenarios.3.Background

3.1.Thelikelihoodratiotest(LRT)

Weprovideabriefbutself-containedintroductionforfindingthemostanomalousregion(rectangle)inaspatialsetting.Theregionsarerectanglesmappedontoaspatialgrid.Wealsoexplainapruningstrategywhichcancutdownthenumberofrectanglesthatneedtobechecked.Thebasictooltofindtheanomalousregionisthelikelihoodratiotest(LRT).

GivenadatasetX,themodeldistributionf(X,θ),anullhypothesisH0:θ∈Θ0andanalternatehypothesisH1:θ∈Θ−Θ0,LRTistheratio

λ¼

supΘ0fLðθjXÞjH0gsupΘfLðθjXÞjH1gwhereL()isthelikelihoodfunction.θisasetofparameterscomingfromcompleteparameterspaceΘandnullparameterspaceΘ0.Seedetailin[2,31].Inaspatialsetting,thenullhypothesisisthatthestatisticalaspectofthephenomenonofinterestinaregionR(thatiscurrentlybeingtested)isnodifferentfromrestofthespatialarea(denotedasR).ThusifaregionRisanomalousthenthealternatehypothesiswillmostlikelybeabetterfitandthedenominatorofλwillhaveahighervalueforthemaximumlikelihoodestimatorofθ.Aremarkablefactaboutλisthatundermildregularityconditions,theasymptoticdistributionofΛ≡−2logλfollows

2aχ2kdistributionwithkdegreesoffreedom,wherekisthenumberoffreeparameters.(seeFig.2).ThusregionswhoseΛvaluedropsinthetailofχ2distributionarelikelytobeanomalous.3.2.Constrainedmaximumlikelihoodestimation

Constrainedmaximumlikelihoodestimationisasetofproceduresfortheestimationoftheparametersofmodelsviathemaximumlikelihoodmethodwithgeneralconstraintsontheparameters,alongwithanadditionalsetofproceduresforstatisticalinference[32].Barlowetal.[33,34]solvedthemaximumlikelihoodestimationbasedonareliabilitygrowthmodel,whichisapplicabletoouremergingscenario.ItassumesthatasystemisbeingmodifiedduringKstagesofdevelopment(inourapplication,weassumetaxicountsinaregiontobevaryingduringKtimesteps).Dataconsistsofxisuccessesinnitrialsinstagei,i=1,…,k.Letpibethesystemreliabilityatthei-thstage(inourcase,piistheincreasingrateoftaxicountati-thtimestep).Barlowetal.,obtainedthemaximumlikelihoodestimatesofp1,p2,…,pk,undertherestrictionthatp1≤p2,≤…,≤pk.Toobtainthemaximumlikelihoodestimatesofp1,p2,…,pksubjecttotherestrictionthatp1≤p2,…,≤pk,firstformtheratiosx1/n1,x2/

^iofpi.Ifforsomej(j=1,…,K−1),xj/nj,combinethen2,…,xk/nk.Ifx1/n1≤x2/n2,≤…,≤xk/nk,thenxi/xnistheMLEp

observationsinthej-thand(j+1)-ststagesandexaminetheratios:x1/n1,…,xj−1/nj−1,xj+xj+1/nj+nj+1,xj+2/nj+2,…,xk/nk,forthe(k−1)stagesthusformed.Iftheseratiosareinnon-decreasingorder,theyconstitutetheMLEsof

ÀÁÀÁ

^j¼p^jþ1¼xjþxjþ1=njþnjþ1.Ifnot,continuetheprocessofcombiningstagesuntiltheratiosareinp1≤p2,≤…,≤pkwithp

non-decreasingorder.Thisprocessneedstoberepeatedatmost(k−1)times,andtheresultisindependentoftheorderinwhichstagesarecombinedtoeliminatereversalsinthesequenceofratios.

Tosimplify,weget:

\"#kkXX

^i¼Maxk≥iMins≤ixi=nip

i¼s

i¼s

,wherei=1,…,k.3.3.MonteCarlosimulation

Thelikelihoodratio,orequivalentlyitslogarithm,canbeusedtocomputeap-value,orcomparedtoacriticalvaluetodecide

whethertorejectnullhypothesis(i.e.thereisnoanomalyinourcase)infavorofthealternativehypothesis(i.e.thereisanomaly).Theprobabilitydistributionoflikelihoodratio,assumingthatthenullhypothesisistrue,canbeapproximatedbychi-squaredistribution

2Iftheχ2distributionisnotapplicablethenMonteCarlosimulationcanbeusedtoascertainthep-value.

L.X.Pangetal./Data&KnowledgeEngineering87(2013)357–373361

Fig.2.Chi-squaredistributionwithdegreeoffreedom=3.

[35].ButwecannotexpecttofindthedistributionofthelikelihoodratioteststatisticinclosedanalyticalformandthusMonteCarlosimulationcanbeperformedtoobtainp-valueinsomecases.Therefore,oncewehavediscoveredtheregionwithmaximumlikelihoodratiovalue,thestatisticalsignificanceofthisregioncanbederivedfromthechi-squaredistributionorbyconductingMonteCarlosimulations.Torunthesimulationtest,alargenumberofreplicationsofdatasetsaregeneratedunderthenullhypothesis,forinstance,9999suchreplicasarecreatedtoperformlikelihoodratiotest.Thetestissignificantatthe5%levelifthelikelihoodratiovalueisamongthe500highestvaluesoftheteststatisticcomingfromthereplications.3.4.Upper-boundingmethodology

Theupper-boundingstrategyforLRTforanomalydetectionwasintroducedbyWuandJermaine[2].ThebasicobservationisthatthelikelihoodvalueofanygivenregionRundercompleteparameterspaceisnotgreaterthanthemultiplicationofthelikelihoodvalueofallitsnon-overlappingsub-regionsundernullparameterspace.Therefore,theloglikelihoodofanygivenregionRcanbeupper-bounded.Forinstance,ifaregionRiscomposedoftwonon-overlappingsub-regionsR1andR2,then

LðθRjXRÞ≤LðθR1jXR1ÞÂLðθR2jXR2Þ:Itisequivalentto

logLðθRjXRÞ≤logLðθR1jXR1ÞþlogLðθR2jXR2Þ:

HereθR;θ′R1andθ′R2arethemaximumlikelihoodestimatorsundercompleteandnullparameterspacesseparately.SeeFig.3.

Fig.3.TheloglikelihoodofregionRundercompleteparameterspaceisupperboundedbythesumoftwonon-overlappingsubregionsR1andR2undernullparameterspace.

362L.X.Pangetal./Data&KnowledgeEngineering87(2013)357–373

Fig.4.Anexampleof(4×4)gridtoillustratetheLRTcalculationandtheupper-boundingpruningmethodology.

Theupper-boundingstrategyisusedtoprunenon-outliers:IfwereplacethelikelihoodofaregionRbytheproductofthelikelihoodsofitssub-regionsandthenewLRTisbelowtheanomalousthreshold(i.e.confidencelevelα),thenRcannotbeanomalous.3.5.Examples

3.5.1.Example1

Usingasimplebutconcreteexample,wewillnowexplainhowtofindanomalousregionusingtraditionalLRTcomputationandtheupper-boundingpruningstrategy.Considerthe4×4grid(G)inFig.4.Thenumberofsuccesses(mi)independentlygeneratedbyPoissonmodelPo(bip)isdisplayedineachcellci.Thebaselinebiineachcellciissetto10.Thesuccessratepis0.5fortheregionRand0.1fortherestofcells.Thesignificancelevelissettoα=0.05.Wereferthesuccessratepasthetestparameter.3.5.1.1.Procedures.ForagivenregionR,traditionalLRTcalculationinvolvesseveralsteps:maximumlikelihoodestimatorfortestparameterofR,RandG;likelihoodcalculationofR,RandG;theratiocalculationfromtheprevioustwosteps.AlthoughthecalculationforPoissondistributeddatacanbesimplifiedinto1EXPstatisticalmodel,inordertoillustratethetraditionalLRTcomputation,theoriginalstepsarecarriedoutasthefollowing:1.Thelikelihoodfunctionofeachcelliis:

ðbipÞkie−ðbipÞ

:fðpjciÞ¼

ki!2.ThelikelihoodofanygivenregionR,whichiscomposedofcellc1,c2,…,ci,…,ctis:

ðbipÞkie−bip

:LðpjRÞ¼Πci∈R

ki!ð

Þ

ð1Þ

ð2Þ

^)iscalculatedas:3.TheMLE0ofpforaregionR(denotedasp

󰀄󰀅󰀄󰀅

^¼∑c∈Rki=∑c∈Rbipii

ð7þ8Þ^^^^^R¼ð10Thuspþ10Þ¼0:75.Similarly,pR,pR1,pR2andpGareobtainedas:0.14,0.7,0.8and0.21.

4.TheΛofregionRisgivenby

ð3Þ

󰀄󰀅ÀÁ19þ15−0:21Â160

ÂeΛR¼−2logLðpjGÞþ2logLðpjRÞþ2logLðpjRÞ¼−2log0:21

󰀄󰀅

15−0:75Â20

þ2log0:75Âe󰀄󰀅

19−0:14Â140

þ2log0:14Âe¼20:76:

ð4Þ

Fromtheabovesteps,wegettheexactloglikelihoodvalueofregionR:logL(p|R)=−19.31;andtheexactloglikelihoodofR1andR2:logL(p|R1)=−9.49,andlogL(p|R2)=−9.78separately.

Weknowthecriticalvalueofχ2(α)=3.84.Obviously,20.76isgreaterthan3.84.ThereforeregionRistreatedasapotentialoutlier.

L.X.Pangetal./Data&KnowledgeEngineering87(2013)357–373363

3.5.1.2.Upper-boundingpruning.Wecanalsoverifytheupper-boundofregionR:ThesumofloglikelihoodofR1andR2is−19.27,whichisgreaterthantheexactloglikelihoodvalueofRwhichwascomputedas−19.31.

󰀄󰀆󰀅󰀄󰀆󰀅󰀆󰀆

Similarly,forregionR′,logLp󰀆R′1¼−1:31,andlogLp󰀆R′2¼−1,thesumofloglikelihoodofR′1andR′2is−2.31.ItisgreaterthantheloglikelihoodvalueofR′,whichis−2.66.Furthermore,ΛR′¼2:14,whichissmallerthanχ2(α)=3.84.Thisshowsthattheupper-boundedLRTvalueissmallerthanthecriticalvalue.Usingthepruningstrategy,theactualvalueofregionR′neednotbecalculatedandcanbepruned.

3.5.2.Example2

Thisexampleillustrateshowtoestimatemaximumlikelihoodofsystemreliabilityinreliabilitygrowthmodel.Todetectemergingoutlier,weusethiswaytocalculatemaximumlikelihoodestimator.

(1).Thenumberofsuccesses,populationandsuccessrateineachtimestepareshowninTable1.

^i,theprocesstogetasequenceofnon-decreasingratiosissummarizedbelow(2).ToestimatethemaximumlikelihoodofP

accordingtotheBarlowtheorem(Table2):^1¼P^2¼P^3¼P^4¼0:385;P^5¼0:833.Fromtheaboveprocedures,weobtainthemaximumlikelihoodestimates:P4.Proposedstatisticalmodels

Definition1.KP:Itrefersto“keyparameter”,denotedasKP{θ1,θ2,…,θi,…,θn}.θiisaparametercomingfromthekeyparameter

set.Forinstance,inepidemiology,ifweareconcernedaboutthetrendofthediseaserateinaspatio-temporalview,thediseaserateisKP.Inourapplication,thevariationoftaxicountwithinaperiodisKP.Forsimplicity,weonlyconsideroneparameterfromthekeyparametersetinourwork(denotedasKP).4.1.PSTOmodel(PersistentSpatio-TemporalOutliermodel)

Itisusedtodetectpersistentspatio-temporaloutliers.ThenullhypothesisH0assumesthattheKPisconsistentforallregionsovertime.ThealternativehypothesisH1assumesthatKPhasahighervalueinregionri∈Rthanthevalueoutsideofregionrj∈G–R(i.e.R),butthevalueinregionri∈Risconsistentovertime.Wecalculatethelikelihoodratiotestasfollows:

8><Πr∈RLðθrjXRÞΠ

i

DðRÞ¼

>:

ri∈RLðθrjXrÞ1

Πri∈GLðθGjXGÞforθr≥θr;otherwise:

ThisformulaistheclassicalLRTstatistic.WefirstcalculatetheMLEofθrandθrtomaximizethenumeratorandtheMLEofθGto

maximizethedenominator.Thentheratioisthescoreweusetoevaluatethe“anomalousness”ofagivenspatio-temporalregion.4.2.ESTOmodel(EmergingSpatio-TemporalOutliermodel)

Thismodelisusedtodetectemergingspatio-temporaloutliers.ThenullhypothesisH0assumesthattheKPisconsistentforallregionsovertime.ThealternativehypothesisH1assumesthatKPisnon-decreasingwitheverytimestepoverregionri∈Randhigherthanrj∈R.Wecalculatethelikelihoodratiotestasfollows:

>>>>ttt>>>Πri∈GLðθt>>GjXGÞ>>:;otherwise:1

Table1

Reliabilitygrowthprocedure.Timestep(i)01234

Numberofsuccesses(xi)2030302050

Population(ni)5070806060

Successrate(xi/ni)0.4000.4290.3750.3330.833

3

Table2

Themaximumlikelihoodestimatorprocedure.i12345

xi2030302050

ni5070806060

L.X.Pangetal./Data&KnowledgeEngineering87(2013)357–373

xi/ni0.4000.4290.3750.3330.833

Firstcalculation0.400

60/150=0.4000.3330.833

Secondcalculation80/210=0.381

Thirdcalculation100/260=0.385

0.8330.833

ThisformulaisderivedfromtheclassicalLRTstatisticanddesignedfortheemergingscenario.UserneedstofindasolutiontomaximizethenumeratorwiththeincreasingKP.Forinstance,Barlow[34]providesanapproachtosolvetheconstrainedmaximumlikelihoodestimationonthereliabilitygrowthmodelinwhichtherelativeriskisnon-decreasingovertime.OrEMalgorithmcanbeperformedtoestimatethekeyparameter.

5.Upper-boundingstrategyandpruningmechanismforproposedframework5.1.Upper-boundingstrategy

(1).InPSTOmodel,theupper-boundingstrategyexplainedinSection3.4canbeextendeddirectlytospatio-temporal

dimension.

(2).InESTOmodel,KPisassumedtovaryatdifferenttimesteps;weshowbelowthattheupper-boundingstrategyisstill

applicabletothismodel.

Theorem1.LetregionR=Rt1∪Rt2,fornon-overlappingtimeintervalst1andt2,wehave:

LðθRjXRÞ≤LðθRt1jXRt1ÞÂLðθRt2jXRt2Þ

ð5Þ

,whereθR¼θRt1∪θRt2andXR¼XRt1∪XRt2.

󰀆ÀÀÁÀ󰀆Á

Proof.WeknowLθRjXRÞ¼LθRt1󰀆XRt1ÂLθRt2󰀆XRt2.UsingtheLRTupper-boundingbasicconcepts,weknowthatθRt1ischosenundermorestrictcompleteparameterspaceandθ′Rt1ischosenunderloosennullparameterspace.ThismeansthatperformingMLE0onasub-intervalofRhasloosentheconstraintscomparingwithperformingMLE1onR.Thus,wehaveLðθRt1jXRt1Þ≤Lðθ′Rt1jXRt1ÞandLðθRt2jXRt2Þ≤LðθR′t2jXRt2Þ.Therefore,LðθRjXRÞ≤Lðθ′Rt1jXRt1ÞÂLðθ′Rt2jXRt2Þ.

Theorem2.LetregionR=R1∪R2,fornon-overlappingspatialregionsR1andR2,wehave:

LðθR1;θR2jXR1;XR2Þ≤LðθR1t1;θR1t2jXR1t1;XR1t2ÞÂLðθR2t1;θR2t2jXR2t1;XR2t2Þ

ð6Þ

,whereR,R1,andR2arecomposedof(t1,t2)timestepsrespectively.Herewejustusetwotimestepstoillustrate.Itisapplicabletoanyttimesteps.

Proof.Foreachtimestepi,wehave:LðθRtijXRtiÞ≤Lðθ′R1tijXR1tiÞÂLðθ′R2tijXR2tiÞ

LðθR1;θR2jXR1;XR2Þ¼LðθR1jXR1ÞÂLðθR2jXR2Þ

LðθR1t1;θR1t2jXR1t1;XR1t2Þ¼LðθR1t1jXR1t1ÞÂLðθR1t2jXR1t2ÞLðθR2t1;θR2t2jXR2t1;XR2t2Þ¼LðθR2t1jXR2t2ÞÂLðθR2t2jXR2t2Þ

Thereforeweget

LðθR1;θR2jXR1;XR2Þ≤LðθR1t1;θR1t2jXR1t1;XR1t2ÞÂLðθR2t1;θR2t2jXR2t1;XR2t2Þ:

FromTheorems1and2,weknowthattheupper-boundingstrategyisapplicabletoemergingmodel(ESTO).

L.X.Pangetal./Data&KnowledgeEngineering87(2013)357–373365

(a) R(b) R

¯(c)R

Fig.5.Pre-computationofanygivenspatial–temporalregionRandtilingofR.Sub-figure(a)showsan8×8×8spatial–temporalgrid;sub-figure(b)shows:one

ofthecuboidsfromspatialpre-computedsetissplitfromtemporaldimensionandresultsin15smallercuboids.Sub-figure(c)istheradialmethodtotileR.

5.2.Pre-computationandpruningmechanism

5.2.1.Pre-computationforregionR

Werecursivelysplittheregionintotwosub-regionsofthesamesize,startingfromthebiggestcuboidenclosedbytwoplanesfromtimeview,endingatthelowestresolutionofthespatial–temporalgrid.Fig.5bshowsthesplitapproachesforasub-cuboidhighlightedasbluefromthetemporaldimensioninan8×8×8grid(Fig.5a).Thelikelihoodofanygivenregioncanbeupper-boundedbythispre-computedsetviathetilingofLRT.

5.2.2.Pre-computationforthecomplementofregionR(i.e.R)Byconsideringalloftheintersectionpoints,weconnecteachintersectionpointonthe3-dimensionalgridwiththeeightcornersofthegrid.Thisproduceseightdiagonals,eachofwhichcreatesonecuboidinthepre-computedset.SincethereareO(n4)intersectionpoints,thereareO(n4)cuboidsinthepre-computedset.Afterwegetthepre-computedset,foranygivenregionR,weusetheradialandsandwichmethodsinLRTtogettheupper-boundedlikelihoodvalueofR.Thesetwomethodsproducesixnon-overlappingsub-cuboidregionsforRseparately.RadialmethodisperformedbyelongatingthesidesofaregionRuntilthesideshitthegridbordersusingclock-wisecounterclock-wideorder.SandwichmethodisperformedbyelongatingtwoparallelsidesofRinbothdirectionsuntiltheyreachthebordersofthegrid.Seedetailofthesemethodsin2-dimensionalgrid[2].In3-dimensionalview,twelvetimestilingisinvolved.Fig.5cshowsthetilinginradialway.

5.2.3.Computationalcomplexity

Inthebrute-forceapproach,thereareatotalofO(n6)regionsthatneedtobesearched.OurapproachreducesthecostbyprecomputingtwolikelihooddatasetwithsizeofO(n4).Thelikelihoodofeveryregionisupper-boundedandthereallikelihoodiscalculatedonlyforanumberofregions.Furthermore,inourimplementation,wehavealreadyrankedthetop-kregionsaccordingtothelikelihoodratiovalues.Therefore,theperformancewon'tbeaffectednomatterwhichsignificancetestingmethodisbeingapplied.

TheprocessofoutlierdetectionisshowninAlgorithm1.Theinputtingparametersare:datagrid(G),probabilitydensityfunction(f),maximumlikelihoodestimationfunctionunderdifferentparameterspace(MLE0,MLE1),likelihoodfunction(L),numberoftopregionstobereturned(K)andthesignificancelevel(α).Inthisprocess,steps1and2performpre-computations;step5tostep8obtainstheupper-boundedlikelihoodvalueofcurrentcuboidforeachiteration.Duringeachiteration,thechi-squareddistributionisappliedtoprunenormalregions.Finally,itoutputstop-kanomalousregions.6.Experiments,resultsandanalysis

WereportonexperimentsconductedwherewehaveusedAlgorithm1totestforaccuracy,pruningabilityandperformance.Kwassetto1.InSections6.1and6.2allexperimentswerecarriedoutonsyntheticdata.InSection6.3,wedemonstratetheusefulnessofourapproachonarealdataset.6.1.Resultsonsyntheticdata

Wetestedfourvariantsoftheoutlierdetection:1.2.3.4.

brute-forcepersistentspatio-temporaloutliers(bpsto)brute-forceemergingspatio-temporaloutliers(besto)

pruning-basedpersistentspatial–temporaloutliers(ppsto)pruning-basedemergingspatio-temporaloutliers(pesto).

366L.X.Pangetal./Data&KnowledgeEngineering87(2013)357–373

Algorithm1.Topkspatio-temporaloutlierdetection

Wegenerateddatasetonagridsizevaryingfrom(4×4×4)to(128×16×16).Fiftyseparatetrialswerecarriedoutforeachscenario(seebelow)andwemeasuredthreeaspects:(a)pruningrate(b)accuracy,and(c)runningtime.Thesignificancelevelwassetatα=0.05.

6.1.1.ScenarioI

Thenullhypothesisholds.ThebaselinebcisgeneratedrelativelyuniformlybyaNormaldistribution(μ=104,σ=103)andafixedsuccessratepof0.001.ThenumberofsuccesseskcisgeneratedfromPo(bcp).ResultsareshowninTable3.

6.1.2.ScenarioII

Thenullhypothesisholds.TheonlydifferencewithScenarioIisthatthedatainarandomselectedcuboidareawithsizeof(5×4×3)isgeneratedbyaNormaldistributionwithdifferentparametersettings(μ=105,σ=5×103).ResultsareshowninTable3.

6.1.3.ScenarioIII

Thealternativehypothesisholds.Itissimilartothenullmodelexceptthatthedataofarandomlyselectedcuboidareaofsize(5×4×3)isgeneratedfromaPoissondistributionwithp=3,6,9,18,and36foremergingcaseandp=3forpersistentcase.ThedatanotwithinthecuboidareawasalsofromaPoissondistributionwithp=1.ResultsareshowninTable4.

Table3

AveragepruningrateandaccuracyinScenariosIandII.Test

(a)ScenarioI4×4×48×8×816×16×16(b)ScenarioII4×4×48×8×816×16×16

Pruning(%)10010099.9

Accuracy(%)NofalsealarmNofalsealarm0.1falsealarm

10099.99100Nofalsealarm0.01falsealarmNofalsealarm

L.X.Pangetal./Data&KnowledgeEngineering87(2013)357–373

Table4

AveragepruningrateinScenarioIII.Testppsto(%)pesto(%)

16×16×1695.2798.37

32×16×1697.3598.46

×16×1697.98.69

32×32×3297.4799.11

367

128×16×1696.7499.23

6.1.4.ScenarioIV

Thealternativehypothesisholds.ItissimilartoScenarioIIIexceptthatthedataofarandomlyselectedcuboidareaofsize(5×4×3)wasgeneratedfromaPoissondistributionwithp=10,50,250,1250,and6250foremergingcaseandp=10forpersistentcase.ResultsareshowninTable5.6.2.Evaluationsonsyntheticdata

6.2.1.AnalysisonScenariosIandII

TheresultsofScenariosIandIIshowthatweachieveahighpruningrateandnofalsealarmisgeneratedevenwhenweperturbthedistributionofoneregion.Thisisasexpectedanddemonstratesthatthealgorithmiswellcalibrated.ByahighpruningratewemeanthatwecanruleouttheoutliersbyjustcheckingtheLRTupperboundderivedfromthetiling.IftheupperboundvalueislessthanthecriticalvaluethenthetrueLRTvalueoftheregioncannotbeanomalous.

6.2.2.AnalysisonScenariosIIIandIV

ForScenariosIIIandIVtheanomalousregionswerecorrectlyidentifiedwhilemaintainingahighpruningrate.Alsotherewerenoregionsdeclaredasfalsepositives.6.2.3.Analysisonrunningtime

I.ProportionofRunningTime:WeanalyzetherunningtimewithandwithoutpruningforScenariosIIIandIV.Weplotouttheproportionofrunningtimeofpruningapproachrelativetobrute-forceapproachinFig.6,whichisthecomputationofrunningtimeof(brute-force−pruning)/brute-force.Also,theproportionpercentageisdisplayedontheselinegraphs.Itshowsthatasthesizeofthespatialandtemporalregionincreases,theeffectofpruningbecomesprominent.Forthelargestdatatested,thepruningmechanismresultedinasavingsofnearly50%comparedtothebrute-forceapproach.

II.SingleLRTCalculationCost:Wehavealsocalculatedthecostofasinglelikelihoodcalculationasthedimensionofthegridsizeincreases.TheresultsareshowninFig.7.Forthe8×8×8dataset,thecostofthelikelihoodcalculationusingthebrute-forceapproachis0.01mswhilewithpruningitincreasesto0.08ms.However,forthelargerdatasets(e.g.,128×16×16)thecostofasinglelikelihoodcalculationgoesfrom0.30msforthebrute-forceapproachtoaround0.16mswithpruning.Anotherobservationisthatthecostofthesinglelikelihoodcalculationisnearlysimilarfordatasetsofthesamesizebutdifferentdimensions,forexample128×16×16and32×32×32.

III.ComponentsofRunningCost:Wehavealsoanalyzedandcomparedtherunningofthedifferentcomponentsbothforthe

brute-forceandpruningapproaches.TheresultsareshowninFig.8.Thebrute-forceapproachhasthefollowingcomponents:

(1).ThecostofthelikelihoodcalculationforeachregionR(RComputation).

(2).ThecostofthelikelihoodcalculationforthecomplementofeachregionR,denotedasR(RComputation).

Thepruningapproachismorecomplexandinvolvesthefollowingcomponents:

(1)ThecostofcomputingthelikelihoodforeachelementofthetilingsetTR.Thiswillbeusedtoupperboundthe

likelihoodvalueforanarbitraryspatio-temporalregion.(Rpre-computation)

(2).ThecostofcomputingthelikelihoodforeachelementofthetilingsetTR(Rpre-computation).

(3).Thecostofupper-boundingthelikelihoodofR.ThisinvolvesfirstexpressingRasaunionofsubregionsandtheneach

subregionasaunionoftilesfromTR.

(4).Thecostofupper-boundingthelikelihoodofR(RComputation).ThisinvolvesfirstexpressingRasaunionof

subregionsandtheneachsubregionasaunionoftilesfromTR.EachRregioncanbeexpressedasaunionofsixsubregionsandtherearetwotypesoftilingmethods:sandwichandradial.Wecalculatethelikelihoodvalueusingbothtilingmethodsandthenselectthetightestupper-bound.

Table5

AveragepruningrateinScenarioIV.Testppsto(%)pesto(%)

16×16×1679.2795.57

32×16×1697.5197.40

×16×1697.7796.78

32×32×3297.2294.70

128×16×1696.65.23

368L.X.Pangetal./Data&KnowledgeEngineering87(2013)357–373

(a) Scenario III psto(b) Scenario III esto

(c) Scenario IV psto(d) Scenario IV esto

Fig.6.Theproportionofrunningtimeofpruningvs.brute-forceapproach.Itshowsthatoutlierpruningsearchingissignificantlyimprovedwhenthedatasetsizestartsfrom32×16×16inthesefourdifferentscenarios.

AsisclearinFig.8,Rcomputationisthemostexpensivepartofthecalculation.However,asthedatasetsizeincreases,theoverheadsofthetilinggivewaytoitsmoreefficientreuseresultinginconsiderablesavings.6.3.Casestudies:BeijingtaxiGPSdata

WeillustratetheuseofthePestomethodonarealdataset[4,5].ThedatasetconsistsofthreemonthsofGPStrajectoriescollectedfrom33,000taxisinBeijingbetween01/03/2009and31/05/2009.TheroadnetworkofBeijingissplitintogrid.Thetaxicountsofeachcellwhichisidentifiedbycolumnindexandrowindexareprovidedinatextfile.Thetimefrequencyofmonitoringthetaxicountsis15min.Todealwithrealdata,weonlyneedtocalculatethetotaltaxicountsineachcellwithinagivenperiod,thenthispre-processeddatacanbedirectlyloadedintoouralgorithm.Inthissection,wesearchforthemostanomalousemergingregionwithinaspecifiedtimeperiodandthenprovideapossibleexplanationfortheanomaly.

6.3.1.CaseI

All(8×8)gridsweretestedbetween9:00:00amand10:00:00amforsixteendays.Wechoose20daysofdatatocalculatethebaselineprobabilities.

6.3.1.1.ResultI.Theperiodfrom01/05/2009to02/05/2009emergedasatopoutlieratthepositionof(0,1)and(1,1)onthegrid.ThisperiodcorrespondstotheLabordaypublicholiday(“GoldenWeek”).Usuallytheholidaydurationissevendays(fromMay1sttoMay7th),butstartingfrom2009,theholidayperiodwasshortentobetweenMay1standMay3rdinclusive.TocelebratetheholidaysitappearsthatmanypeoplevisitedHappyValley,thebiggestamusementparkinBeijing.The3rdInternationalFashionfestivalwasalsoheldinthatlocation.Ourresultscoincidewiththefactthattaxisenjoygoodbusinessonpublicholidays

L.X.Pangetal./Data&KnowledgeEngineering87(2013)357–373369

(a) Scenario III psto(b) Scenario III esto

(c) Scenario IV psto(d) Scenario IV esto

Fig.7.Thesinglelikelihoodrationcalculationcostofpruningvs.brute-forceapproach.Itshowsthatoutlierpruningsearchingissignificantlyimprovedwhenthedatasetsizestartsfrom32×16×16inthesefourdifferentscenarios.

andthereisusuallyanincreaseinthenumberoftaxisneartouristspots.TheresultsareshowninFigs.9aandb,and10a.Wecanseethatthenumberoftaxisincreasedfrom1stMayto2ndMayandthendecreasedfrom3rdofMayonwards.

6.3.2.CaseII

All(8×8)gridsweretestedbetween3:15:00pmto4:30:00pmfor8days.Weuse12daysofdatatocalculatethebaselineprobabilities.

6.3.2.1.ResultII.Theregionhighlightedasblueonthemapwasdetectedasanemergingoutlierfrom16/03/2009to20/03/2009.ItisoneofthecityexpressroadcalledTonghuiheNorthRoad.From01/03/2009to13/03/20093,the11thNationalPeople'sCongress(i.e.NPC)washeldinBeijing,whichistheannualmeetingofthehighestlegislativebodyofthePeople'sRepublicofChina.Nearly3000deputiesfromalloverChinaattendedtheCongress.Duringthisperiod,thetrafficauthoritiesinBeijingimposedtemporaryrestrictionmeasuresonvehiclestocontroltrafficflow.Mostpeoplechoosetotakebusorsubwayinsteadofdrivingortakingtaxitocommutetowork.ThenumberoftaxitravelingonTonghuiheNorthroadincreaseduntilmostofthedeputiesleftBeijing.TheresultsareshowninFigs.9candd,and10b.

Toinvestigatemore,wesetk=5inourcasestudies.Wefoundthattheothertop4outliershavebigoverlaponthetop1outlierregion.Theseoutliershavesimilarspatialareaandspanningtimeperiod.Itverifiesthattheemergingoutliercanbecorrectlylocated.7.Conclusion

Inthisarticle,anefficientpatternminingapproachwasproposedtocaterforspatio-temporaltrafficdata,whichisabletodetect“persistentoutliers”and“emergingoutliers”.Weproposedtwostatisticalmodels,whichencompassthegenericfeaturesofanomalouspatterns.Wealsoderivedanupper-boundingstrategyforthetwostatisticalmodelssupportingforfastoutlierdetection.Ourcomprehensiveexperimentsshowthattheperformanceofcomputationaltimeisgreatlyimprovedwhenthedatasetsizeislarge,andwecanstillfindthecorrectoutliers.Wealsocarefullyanalyzedthetilingschemeandtheupper-boundingstrategyinthesyntheticexperiments.Inourcasestudies,ourmodelisabletodetectregionswithemergingnumberoftaxisthatcanbevalidatedbyknownmajortrafficevents.

370L.X.Pangetal./Data&KnowledgeEngineering87(2013)357–373

(a) Split cost of ESTO with

smaller dataset

(b) Split cost of ESTO with

larger dataset

(c) Split cost of PSTO with

smaller dataset

(d) Split cost of PSTO with

larger dataset

Fig.8.Therunningtimeofcomparablepartsofbrute-forcevs.pruningapproachinscenarioIII.Itshowsthatthepruningsearchingisfasterwiththelargerdataset.AlthoughthetilingofeveryRtakesthelongesttimeinpruningsearching,thecostissmallcomparedtothelikelihoodcalculationofeveryRinbruteforcesearching.

Ourapproachisapplicabletoawidevarietyofcontexts.Forinstance,inweatherforecastmodels,itcanbeusedtodetectemergingweatherpatternwhichraisesthepossibilityofdryandwarmclimates.Theseclimatesmayhavegreatimpactoninfectiousdisease.Investigatingsuchweathervariablesassociatedwithinfectiousdiseasescanhelpinanticipatingfutureepidemics,andearlywarningsystemcanbedevelopedforsurveillanceandinterventions.Ingeneexpressionmodels,discoveringemergingpatternsishelpfulfordiagnosisandunderstandingcorrelationofgeneexpressionprofilestodiseasestatesinasignificantway.Theyareusefulforcapturinginteractionsamonggenes,findingsignaturepatternsfordiseasesubtypes,andgeneratingpotentialdiseasetreatmentplans,etc.Infinancemodels,miningemergingbusinesstrendfromdifferentgeographicalregionscanprovideinsightforidentifyingsomeprofitableinvestments.Itcanalsobeappliedinemergingeventidentification,intrusiondetection,etc.8.Futurework

Fromtheabovediscussion,wealreadyobservedthatthecostofpruningapproachhasnearlyabove50%speed-upwithrespecttothenaivealgorithmasthegridsizeincreases.Itallowsthecomputationtobeperformedforlarge-scaleapplications.However,wealsonoticedthatitstillneedsalmostonetotwodaystofindthetopoutlierevenwithpruningapproachinoursyntheticexperimentswithgridsizeof128×16×16or32×32×32.Whenthedatasetsarenotmodestlysized,thescalabilityisstillnotgood.Thisperformancemightnotbeacceptableinrealdetectionapplications.

Weseethatthescalabilityofoutlierdetectionhasbecomeimportantastheamountofdataforanalysishasbeenincreasinggreatly.Fordealingwithlargedatasets,itisimportanttobothparallelizethealgorithms,andimplementthemtoexecuteefficiently.Fortunately,theLRTscanningalgorithmishighlyparallelizable,eachsub-gridcomputationisindependentofeachotherandthewholegridcanbepartitionedintoequalpartsanddistributedoverthemultipleprocessors.TheGPUcomputingorGPGPU(i.e.General-PurposecomputationonGraphicsProcessingUnits)hasbecomeanewtrendforresearcherstodogeneralpurposescientificandengineeringcomputationbytheuseofGPU.ItenablesdramaticincreasesincomputingperformancebyharnessingthepoweroftheGPUandisstartingtoplayasignificantroleinlarge-scalemodeling.Duetoourhighlyparallelizable

L.X.Pangetal./Data&KnowledgeEngineering87(2013)357–373371

(a) The average taxi counts within outlier

regions vs. non-outlier regions from01/05/2009 to 02/05/2009

(b) The average taxi counts within outlier

regions from 01/05/2009 to 08/05/2009

(c) The average taxi counts within outlier

regions vs. non-outlier regions from16/03/2009 to 20/03/2009

(d) The average taxi counts within outlier

regions from 14/03/2009 to 21/03/2009

Fig.9.Comparisonofoutlyingandnon-outlyingregionsinan8×8×8grid.Itshows:(a)theaveragetaxicountswithinoutlierregionsarenon-decreasingcomparedtonon-outlierregionswhichsharethesameemergingperiodwithoutlier.(b)Theaveragetaxicountswithinoutlierregionsthroughouttheemergingperiodarenon-decreasingcomparedtotheoutlierregionsfortherestoftheperiod.

algorithm,thetechnologyofgraphicsprocessingunit(GPU)andcomputeunifieddevicearchitecture(CUDA),whichareidealformassivedataparallelism,mightbeconsideredinourimplementationtoacceleratethespatio-temporalexploringandanalyzingprocesses.Aspartofourfuturework,parallelizationofpruningapproachwillbepursuedtoachievefasteroutlierdetection.

(a) The region highlighted with blue borders

on the map is the outlier region of Case I.The icons hows the exact location ofHappy Valley.

(b) The region highlighted with blue borders

is the outlier of Case II. It is the city expressroad of Bei-jing. (i.e. Tonghuihe North Road)

Fig.10.OutlierlocationsfromourtwocasestudiesonBeijingMap.

372L.X.Pangetal./Data&KnowledgeEngineering87(2013)357–373

References

[1]Y.Zheng,X.F.Zhou,ComputingwithSpatialTrajectories,Springer,2011.

[2]M.Wu,X.Song,C.Jermaine,S.Ranka,J.Gums,ALRTframeworkforfastspatialanomalydetection,In:Proceedingsofthe15thACMSIGKDDInternational

ConferenceonKnowledgeDiscoveryandDataMining(KDD'09),2009,pp.887–6.

[3]J.Yuan,Y.Zheng,X.Xie,G.Sun,Drivingwithknowledgefromthephysicalworld,in:Proceedingsofthe17thACMSIGKDDConferenceonKnowledge

DiscoveryandDataMining(KDD'11),2011,pp.316–324.

[4]J.Yuan,Y.Zheng,C.Zhang,W.Xie,X.Xie,G.Sun,Y.Huang,T-drive:drivingdirectionsbasedontaxitrajectories,Proceedingsofthe18thACMSIGSPATIAL

InternationalConferenceonAdvancesinGeographicInformationSystems(ACMSIGSPATIALGIS2010),2010,pp.99–108.

[5]W.Liu,Y.Zheng,S.Chawla,J.Yuan,X.Xie,Discoveringspatio-temporalcausalinteractionsintrafficdatastreams,in:KDD'1117thSIGKDDConferenceon

KnowledgeDiscoveryandDataMining,2011,pp.1010–1018.

[6]Y.Zheng,Y.Liu,J.Yuan,X.Xie,UrbanComputingwithTaxicabs,UbiComp'11,September17–21,2011,pp.–98,(Beijing,China).

[7]S.Chawla,Y.Zheng,J.Hu,Inferringtherootcauseinroadtrafficanomalies,IEEEInternationalConferenceonDataMining(ICDM2012),2012.[8]V.Chandola,A.Banerjee,V.Kumar,Anomalydetection:asurvey,in:AcmComputingSurveys,vol.41,2009,pp.1–58.

[9]V.J.Hodge,J.Austin,Asurveyofoutlierdetectionmethodologies,in:ArtificialIntelligenceReview,vol.22,2004,pp.85–126.[10]F.J.Anscombe,I.Guttman,Rejectionofoutliers,in:Technometrics,vol.2,1960,pp.123–147.

[11]E.Eskin,Anomalydetectionovernoisydatausinglearnedprobabilitydistributions,in:InProceedingsofthe17thInternationalConferenceonMachine

Learning,MorganKaufmannPublishersInc.,2000,pp.255–262.

[12]M.Desforges,P.Jacob,J.Cooper,Applicationsofprobabilitydensityestimationtothedetectionofabnormalconditionsinengineering,in:InProceedingsof

theInstituteoftheMechanicalEngineers,vol.212,1998,pp.687–703.

[13]R.Ng,J.H.Clarans,Amethodforclusteringobjectsforspatialdatamining,IEEETransactionsonKnowledgeandDataEngineering14(2002)1003–1016.[14]J.S.M.Ester,H.-P.Kriegel,X.Xu,Adensity-basedalgorithmfordiscoveringclustersinlargespatialdatabaseswithnoise,DataMiningandKnowledge

Discovery2(1998)226–231.

[15]W.Wang,J.Yang,R.R.M.Sting,Sting:astatisticalinformationgridapproachtospatialdatamining,VLDB'97,Proceedingsof23rdInternationalConference

onVeryLargeDataBases,August25-29,1997,MorganKaufmann,Athens,Greece,1997.

[16]D.B.Neill,A.W.Moore,M.Sabhnani,K.Daniel,Detectionofemergingspace–timeclusters,in:Proceedingsofthe11thACMSIGKDDInternationalConference

onKnowledgeDiscoveryinDataMining(KDD'05),2005,pp.218–227.

[17]D.B.Neill,A.W.Moore,DetectionofEmergingSpace–TimeClusters:PriorWorkandNewDirections,TechnicalReport,CarnegieMellonUniversity,2004.[18]M.Kulldorff,Aspatialscanstatistic,Comm.InStat.:TheoryandMethods,1997.1481–1496.

[19]M.Kulldorff,Spatialscanstatistics:models,calculations,andapplications,in:J.Glaz,N.Balakrishnan(Eds.),ScanStatisticsandApplications,Birkhauser,1999.[20]M.Kulldorff,N.Nagarwalla,Spatialdiseaseclusters:detectionandinference,StatisticsinMedicine(1995)799–810.

[21]M.Kulldorff,W.Athas,E.Feuer,B.Miller,C.Key,Evaluatingclusteralarms:aspace–timescanstatisticandclusteralarmsinLosAlamos,AmericanJournalof

PublicHealth88(1998)1377–1380.

[22]L.Huang,M.Kulldorff,D.Gregorio,ASpatialScanStatisticforSurvivalData,InternationalBiometricsSociety,2007.109–118.[23]I.Jung,M.Kulldorff,A.Klassen,Aspatialscanstatisticforordinaldata,StatisticsinMedicine(2007)1594–1607.

[24]I.Jung,M.Kulldorff,O.Richard,Aspatialscanstatisticformultinomialdata,StatisticsinMedicine(2010)1910–1918.

[25]L.Huang,R.Tiwari,M.Kulldorff,J.Zou,E.Feuer,WeightedNormalSpatialScanStatisticforHeterogenousPopulationData,AmericanStatisticalAssociation,2009.[26]http://www.satscan.org2008.

[27]T.Tango,K.Takahashi,K.Kohriyama,Aspace–timescanstatisticfordetectingemergingoutbreaks,InternationalBiometricsSociety(2010)106–115.[28]J.H.Friedman,N.I.Fisher,Bumphuntinginhigh-dimensionaldata,StatisticsandComputing9(1999)123–143.

[29]D.B.Neill,A.W.Moore,AFastMulti-resolutionMethodforDetectionofSignificantSpatialDiseaseClusters,NIPS,2003.651–658.[30]V.Chandola,A.Banerjee,V.Kumar,Anomalydetection:asurvey,ACMComputingSurveys41(2009)1–58.[31]http://en.wikipedia.org/wiki/likelihood-ratio-test2011.

[32]R.Schoenberg,Maximumlikelihoodestimationandconservativeconfidenceintervalproceduresinreliablitygrowthanddebuggingproblems,Computational

Economics10(1997)251–266.

[33]R.E.Barlow,F.Proschan,E.M.Scheuer,MaximumLikelihoodEstimationandConservativeConfidenceIntervalProceduresinReliabilityGrowthand

DebuggingProblems,1966.

[34]R.E.Barlow,E.M.Scheuer,Reliabilitygrowthduringadevelopmenttestingprogram,Technometrics8(1966)53–60.[35]http://en.wikipedia.org2011.

LinseyXiaolinPangiscurrentlystudyingPh.D.intheSchoolofInformationTechnologiesatUniversityofSydney.Shecompletedhermaster'sdegreefromtheNationalUniversityofSingapore.Herresearchinterestsincludedatamining,outlierdetectionandparallelcomputing.

SanjayChawlaisafullprofessorintheSchoolofInformationTechnologies,UniversityofSydney.HereceivedhisPh.D.in1995fromtheUniversityofTennessee,Knoxville,USA.HisresearchworkhasappearedinleadingdataminingjournalsandconferencesincludingACMTKDD,MachineLearning,IEEETKDE,DMKD,ACMSIGKDD,IEEEICDM,SDM,andPAKDD.HeservesontheeditorialboardofDataMiningandKnowledgeDiscoveryandistheProgramCo-ChairofPAKDD2012.Hehasreceivedfourbestpaperawardsinthelastfiveyears—mostrecentlyattheIEEEInternationalConferenceinDataMining(ICDM)2010.

L.X.Pangetal./Data&KnowledgeEngineering87(2013)357–373373

WeiLiuisaresearchfellowattheUniversityofMelbourne,Australia.HeobtainedhisPh.D.degreefromtheUniversityofSydneyin2011,intheareaofclassskewnessandadversariallearning.HisworkhasappearedinseveralconferencesandjournalsincludingKDD,SDM,ECML/PKDD,PAKDDandMachineLearningjournal.Hisresearchinterestsincludedatamining,machinelearningandbioinformatics.

YuZhengisaleadresearcherfromMicrosoftResearchAsia(MSRA).HeisanIEEEseniormemberandACMseniormember.Hisresearchinterestsincludelocation-basedservices,spatio-temporaldatamining,ubiquitouscomputing,andmobilesocialapplications.Hehaspublishedover50referredpapersasaleadingauthorathigh-qualityinternationalconferencesandjournals,suchasSIGMOD,SIGKDD,ICDE,WWW,AAAI,andIEEETKDE,wherehehasreceived3bestpaperawardsaswellas1bestpapernominee.Thesepapershavealsobeenfeaturedbytop-tierpresseslikeMITTechnologyReviewmultipletimes.Inaddition,hehasbeenservingover30prestigiousinternationalconferencesasachairoraprogramcommitteemember,includingICDE,KDD,Ubicomp,andIJCAI,etc.Sofar,hehasreceived3technicaltransferawardsfromMicrosoftand20granted/filedpatents.In2008,hewasrecognizedastheMicrosoftGoldenStar.HejoinedMSRAin2006afterreceivingaPh.D.degreeinEEfromSouthwestJiaotongUniversity.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo0.cn 版权所有 湘ICP备2023017654号-2

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务