您好,欢迎来到华佗小知识。
搜索
您的当前位置:首页The Stellar Content of Nearby Star-Forming Galaxies. III. Unravelling the Nature of the Dif

The Stellar Content of Nearby Star-Forming Galaxies. III. Unravelling the Nature of the Dif

来源:华佗小知识
AcceptedforPublicationintheAstrophysicalJournal

APreprinttypesetusingLTEXstyleemulateapjv.04/03/99

THESTELLARCONTENTOFNEARBYSTAR-FORMINGGALAXIES.III.UNRAVELLINGTHE

NATUREOFTHEDIFFUSEULTRAVIOLETLIGHT1

RupaliChandar2,ClausLeitherer2,ChristyA.Tremonti3,DanielaCalzetti2,

AlessandraAloisi2,4,GerhardtR.Meurer5,DuiliadeMello6,7

AcceptedforPublicationintheAstrophysicalJournal

arXiv:astro-ph/0505024v1 2 May 2005ABSTRACT

Weinvestigatethenatureofthediffuseintra-clusterultravioletlightseenintwelvelocalstarburstgalaxies,usinglong-slitultravioletspectroscopyobtainedwiththeSpaceTelescopeImagingSpectrograph(STIS)aboardtheHubbleSpaceTelescope(HST).Wetakethisfaintintra-clusterlighttobethefieldineachgalaxy,andcompareitsspectroscopicsignaturewithSTARBURST99evolutionarysynthesismodelsandwithneighboringstarclusters.OurmainresultisthatthediffuseultravioletlightinelevenofthetwelvestarburstslacksthestrongO-starwindfeaturesthatareclearlyvisibleinspectraofluminousclustersinthesamegalaxies.Thedifferenceinstellarfeaturesdominatingclusterandfieldspectraindicatethatthefieldlightoriginatesprimarilyfromadifferentstellarpopulation,andnotfromscatteringofUVphotonsleakingoutofthemassiveclusters.AcutalongthespatialdirectionoftheUVspectraestablishesthatthefieldlightisnotsmooth,butrathershowsnumerous“bumpsandwiggles.”Roughly30–60%ofthesefaintpeaksseeninfieldregionsoftheclosest(<4Mpc)starburstsappeartoberesolved,suggestingacontributionfromsuperpositionsofstarsand/orfaintstarclusters.ComplementaryWFPC2UVIimagingforthethreenearesttargetgalaxies,NGC4214,NGC4449,andNGC5253areusedtoobtainabroaderpicture,andestablishthatallthreegalaxieshaveadispersedpopulationofunresolved,luminousbluesources.BecausethefieldspectraaredominatedbyBstars,wesuggestthattheindividualsourcesobservedintheWFPC2imagesareindividualBstars(ratherthanOstars),orsmallstarclusters.Weconsiderseveralscenariostounderstandthelackofobservedmassivestarsinthefield,andtheirimplicationsfortheoriginofthefieldstellarpopulation.Ifthefieldstellarpopulationsformedinsitu,thefieldmusteitherhaveanIMFwhichissteeperthanSalpeter(α∼−3.0to−3.5),oraSalpeterslopewithanuppermasscutoffof30–50M⊙.Ifstarformationoccursprimarilyinstarclusters,thefieldcouldbecomposedofolder,fadedclusters,and/orapopulationwhichiscoevalwiththeluminousclustersbutlowerinmass.Weusethesebenchmarkpopulationstoplaceconstraintsonthefieldstellarpopulationorigin.Althoughthefieldprobablyincludesstarsofdifferentages,theUVlightisdominatedbytheyoungeststellarpopulationsinthefield.Ifthefieldiscomposedofolder,dissolvingclusters,weestimatethatstarclusters(regardlessofmass)needtodissolveontimescales7–10Myrtocreatethefield.Ifthefieldiscomposedofyoungclusterswhichfallbelowthedetectionlimitofindividualsourcesinourspectroscopy,theywouldhavetobeseveralhundredsolarmassesorless,inordertobedeficientinOstars,despitetheirextremeyouth.Subjectheadings:galaxies:starburst—galaxies:stellarcontent

1.INTRODUCTION

Nearbystarburstgalaxiesarefundamentaltestinggroundsforkeyquestionsrelatedtobothstarformationandgalaxyevolution,aswellastheinterplaybetweengalaxiesandtheirsurroundings.Adetailedunderstandingofthepropertiesoflocalstarburstsisalsocriticaltofur-therexaminestarforminggalaxiesathighredshift,sincethestarformationratesofthesedistant,younggalaxiesaremostsimilartothosefoundinlocalstarbursts(e.g.,Steideletal.1996).However,wearestilllearningaboutthestellarcontentandpropertiesoflocalUV-brightstar-bursts.Meureretal.(1995)showedthatnearbystarbursts

1Based

areirregularstructuresconsistingofdiffuselydistributedlightinterspersedwithprominentstarclusters,includingbothcompactobjects(withhalf-lightradii<∼10pc),andmoreextendedOBassociations.Theyestimatethatclus-tersonlycontribute∼20%ofthelightseeninultravioletimagesofstarburstgalaxies(Meureretal.1995;Maozetal.1996).Thusthediffuselydistributedlightactuallydominatesthestarburst,comprisingroughly80%ofthetotalintheUV.Toaccountfortheobserved“bimodal”natureofstellarpopulationsinstarbursts,Meureretal.(1995)suggestedthattwomodesofstarformationoccurinhighintensitybursts—prominentclusterformationanddominantdiffuselydistributedstarformation.

onobservationswiththeNASA/ESAHubbleSpaceTelescope,obtainedattheSpaceTelescopeScienceInstitute,whichisoperated

bytheAssociationofUniversitiesforResearchinAstronomy,Inc.underNASAcontractNAS5-26555.

2SpaceTelescopeScienceInstitute,3700SanMartinDrive,Baltimore,Maryland21218;ElectronicAddress:rupali@stsci.edu3StewardObservatory,933N.CherryAve.,Tucson,AZ,857214OnassignmentfromtheSpaceTelescopeDivisionofESA

5JohnsHopkinsUniversity,3400N.CharlesStreet,Baltimore,MD21218

6LaboratoryforAstronomyandSolarPhysics,Code681,GoddardSpaceFlightCenter,Greenbelt,MD207717DepartmentofPhysics,CatholicUniversityofAmerica,620MichiganAvenue,Washington,DC200

1

2

Severalexplanationsbesidesstarformationoccurringina“cluster”modeanda“field”modecanexplaintheob-serveddichotomyofstellarpropertiesinlocalstarbursts.CurrentlyonepopularscenariosuggeststhatthediffuseUVfieldlightiscreatedviadissipationofagingstarclus-ters,whichcontributetheirremainingstarstothefield.Thereareseveralworkswhichindirectlysupportthissce-nario(e.g.,Tremontietal.2001;Lada&Lada2003;Fall,Chandar,&Whitmore2004).

ThestellarcontentofnearbystarburstgalaxieshavebeenstudiedinmoredetailusingmultibandopticalWFPC2photometry.Inadditiontostarclusters,color−magnitudediagram(CMD)analysisofthefieldstarpopulationsuggeststwodistinctoverallpopulations.Greggioetal.(1998)andHarrisetal.(2001)findevidencethattheresolved,diffusestellarpopulationsinNGC1569andM83areolderthantheclusters.Tremontietal.(2001)comparedUVspectroscopyofbothresolvedclustersandthediffusefieldlightinthenearbystarburstNGC5253,withstellarevolutionarymodels.Theyestablishedthatthediffuseintra-clusterlightinNGC5253hasaspectrumlackingthestrongO-starwindfeatureswhichareclearlyseeninanumberoftheclusterspectrainthisgalaxy.Alloftheseobservationsareconsistentwithascenariowherethefieldiscomposedofdissolvedstarclusters.Apossi-blecounter-example,whichsupportstheconceptofstarsformingearlyoninbothclustersandinthefield,istheTosietal.(2001)studyofNGC1705.TheyfoundthatinordertoreproducetheCMDofpointsourcesinthispost-starburstgalaxy,a2–3Myrfieldstarpopulationwasrequired.

However,otherscenarioscanalsoplausiblyexplainthepresenceofdiffuseUVfieldlightinstarbursts.Forexam-ple,continuousstarformationingalaxiescouldresultinapopulationofBstars,whichoriginallyformedinclus-tersoverthelastfew100Myr,anddispersedthroughoutthegalaxyoncetheclustersdissolved.Asecondpossi-bilityisthatafractionofUVphotonsoriginatinginhotstarsembeddedinHIIregionsleakoutandscatteroffdustgrains.In30Doradus,UITobservationssuggestthatscat-teredlightisthemechanismresponsiblefortheUVfield(Chengetal.1992).InHe2-10however,amuchmoredistantstarburst,wewereabletoestablishthatscatteredlightcannotbethedominantmechanismresponsiblefortheobservedUVfield(Chandaretal.2003).Barthetal.(1995)suggestedathirdpossibility,thatthediffuselightinnuclearstarburstringsmaybedominatedby(lowermass),unresolvedstarclusters.Afourthpossibleexplanationisthatindividualmassivestarsmaybeforminginrelativeisolationinthefield,assuggestedforthenuclearregionsofM51(Lamersetal.2002).Finally,inourrecentworkonthestellarcontentofHe2-10,weestablishedthatboththeclustersandintra-clusterregionsshowsignaturesofmassivestars.Fromourdetailedsimulations,wesuggestthatthefieldpopulationwhichformedcoevallywiththeneighboringcompactclusters(∼4–5Myrago)maycomefromlessspatiallyconcentrated“scaledOBassocations”(SOBAs),whicharenotlackinginthemostmassivestars,ratherthanfaint,lowmasscoevalcompactstarclusters.IsHe2-10auniquecase,whereweare“catching”thisgalaxyearlyduringawellcoordinatedburst?Doothergalaxieshavefieldstellarpopulationswhichappearolderthanthoseofneighboringclusters,suchasfoundin

NGC5253?Hereweextendourpreviousstudiesofthediffuseintra-clusterlightinlocalstarburstsusinglongslitSTISUVspectroscopy.TengalaxiesfromourHSTpro-gramGO-9036havehighenoughS/Ninthefieldtoallowustostudytheirstellarcomposition.Tothese,weaddthepublishedresultsofHe2-10andNGC5253foramorecompletelookatthenatureofdiffuseUVlightinstarburstgalaxies.

Thispaperisorganizedasfollows:§2providesback-groundinformationonthegalaxysampleanddescribestheobservations,basicdatareduction,anddefinitionofthefieldregions;§3describesreductionandbasicanal-ysisofcomplementaryarchivalWFPC2imagesforthreeoftheclosesttargetgalaxies(NGC4214,NGC4449,andNGC5253);§4derivesthestellarcontentofthefieldbycomparingwithSTARBURST99models;and§5takesad-vantageofspatialinformationaswellasthespectra,inordertoconstraintheoriginoftheUVfieldlightinoursample.Finally,in§6wesummarizethemainconclusionsofthiswork.

2.THESAMPLE,OBSERVATIONSANDDATAREDUCTION

2.1.GalaxySample

OurHSTprogram,GO-9036,wasdesignedtoobtainahomogeneousfar-andnear-UVspectroscopicdatasetof18nearbystarburstgalaxies.Thetargetgalaxiesspanabroadrangeofmorphologies,chemicalcompositions,andluminosities.Theprimarytargetsineachgalaxywereonetothreeluminousclusters(eithercompact′′orgiantHIIregions);however,theprojected25×0.2′′STISlong-slitalsocoversfainter,serendipitousobjects(whichcouldbestarsorclusters),andregionsofdiffuseUVemissionwherenoobvioussourcesareseeninavailablearchivalFOCandWFPC2images.Thegalaxysample,distances,andareaprojectedintheslitarecompiledinTable1.Additionaldetailsforthegalaxysampleandobservations(includingslitlocations)arepresentedinthefirstpaperinourseries(Chandaretal.2005a;hereafterpaperI).Analysisoftheclustercontentisthefocusofthesecondpaper(Chan-daretal.2005b;hereafterpaperII).Inthisinvestigation,weanalysethediffuseUVemissionseenbetweenclustersintentargetgalaxies.Thesearethegalaxieswherethesignal-to-noise(S/N)oftheextractedfieldspectrumissuf-ficientlyhigh(>∼10)toquantifythedominantstellarpop-ulation.TotheseweaddtheresultsofourpreviousworkinHe2-10(Chandaretal.2003)andNGC5253(Tremontietal.2001),foracomprehensivestudyofdiffuseUVemis-sionin12localstarburstgalaxies.

2.2.DataReduction

Inordertocombinemultiplealignedexposuresofthesametarget,weaddedtogethertheflatfieldedtwo-dimensionalimages(therewerenoshiftsbetweenmultiplegalaxyspectratakenforGO-9036),updatedtheexposuretimeintheheaderstoreflectthetotalintegrationtime,andreprocessedthroughtheCALSTISpipeline.Thispipelinerebinsthespectraandprovidesaglobaldetectorlinearitycorrection,darksubtraction,flatfielding,wave-lengthcalibrationandconversiontoabsolutefluxunits.Forsubsequentanalysisonthefieldregionsweutilizedthesefullycalibratedrectifiedtwodimensionalimagesre-processedthroughtheCALSTISpipeline,whichhavea

linearwavelengthscaleanduniformsamplinginthespatialdirection.Furtherprocessingstepsontheextractedonedimensionalspectraincludedderedshifting(valuestakenfromNED)andrebinningtothewavelengthscaleoftheSTARBURST99models(0.75˚Apixel−1)utilizedforcom-parisonwiththeobservations.Wethencorrectedtheex-tractedspectraforstronggeocoronalemissionatLyαandOIλ1302byassumingthatanouterportionfromthetwodimensionalspectrum,whichistypicallylocatedneartheedgeoftheobservablegalaxy,representsapurelygeocoro-nalspectrumneartheLyαandOIλ1302features.Foreachgalaxy,thespectrumextractedfromneartheendoftheslitistypicallyatleast10×weakerincontinuumfluxthenthefieldregions,anddisplaysveryweakspectralfea-tures(iftheywereobservableatall),indicatingthatthesearesuitableforcorrectinggeocoronalfeatures.

2.3.ExtractionoftheField

Inordertostudythestellarcontentofthegalaxiesinoursample,wefirstdetectedobjects(whichcouldbestarsorclusters)fromprofilestakenalongtheslit(700columnswerecollapsedalongthespatialdirection).Ourdetec-tionprocedureisanalogoustothosegenerallyusedforobjectdetectioninimages.Objectsweredefinedaspeaksalongthespatialdirectionwhichreachedalevelatleastfivetimeshigherthanthestandarddeviation(σ)plusthelocalbackgroundlevel(asecondcategory,faintobjects,whichhave3–5σdetectionsarealsostudiedinpaperII).Thistechniqueensuresthatwearedetectingrealsourcesandnotrandomsurfacebrightnessfluctuations.Inprinci-ple,detectedobjectscanbeeitherstellarclustersorindi-vidualstars.However,individualstarsshouldbeconsid-eredaspartofthediffuseUVpopulation.Therefore,itisveryimportanttoassesswhetherourobjectdetectional-gorithmisdetectingindividualstars,sincewedonotwanttoexcludeindividualOand/orBstarsfromourdefinitionofthefield.Basedonthedepthofourdataanddetec-tionlimits,thepossibilityofexcludingindividualmassivestarsisonlyaconcernfortheclosestgalaxies,thosewithin∼5Mpc.Becauseclustersdimastheyage,thetotallu-minositiesofclustersandindividualO/Bsupergiantscanoverlap,makingitimpracticaltouseasimpleluminositycuttoseparatestarsandclusters.Afurthercomplicationisthatthenarrowslitusedinthisstudyoftendoesnotincludeallofthelightfromanobject,eitherbecausetheobjectisextended,and/orbecauseitisnotcenteredintheslit.Thusitisimportanttoconsiderthetotalintrin-sicluminositiesofdetectedsources,andnotjustthelightfallingintheslit.Toaddressthisconcern,weuseacombi-nation˚ofobjectluminosities(frompaperII)measuredat1500A,whicharestrictlowerlimits,andsizeinformation(fromprofilesalongtheSTISslitandsometimesavailableWFPC2images)toassesswhetherweareindeeddetectingindividualluminousstars.

HereweuseNGC5253asanexampletoexaminethenatureofdetectedsources,sincetheFUVspectrumforthisgalaxyisthedeepestofthethreeclosesttargets.AnOsupergianthasanintrinsicspectralluminosityat1500˚A,Lof∼5×1035ergs−1˚A−1

density

1500,.Thisissim-ilartothelightfallingintheSTISslitfortheweakestdetectedobjects(seee.g.,objects3and11inTremontietal.2001).However,thespatialprofilesfortheseob-3

jectsareclearlyresolved(asaretheprofilesforbasicallyalldetectedobjectsinNGC5253andNGC4214,andmostobjectsinNGC4449),andtheslitlocationsuggeststhatmuchofthefluxfromobject3inNGC5253hasbeenmissed.Infact,acomparisonofthetotalLF170WWFPC2imagesandSTISspectroscopy1500fromavailable(seeTable1inTremontietal.2001)showsthatforthefourbrightestsources,theLofthelightfrom1500fluxmeasuredfromimag-ingwhereallanobjectisaccessible,ishigherbyfactorsof4–15thanthefluxmeasuredfromSTISspectroscopy.Similarargumentsapplyfortheobjectsde-tectedinNGC4214andNGC4449.Weconcludethatthedetectedobjectsingalaxiescloserthan5Mpcarenotindividualluminousstars,butstellarclustersorgroupsofstars.Formoredistantgalaxiesobjectfluxesaretoohightocomefromindividualstars.Therefore,wewillrefertodetectedsourcesinourSTISspectraasclusters.Inouranalysis,wemakeanarbitrarydistinctionineachgalaxybetweenbrightclusters(S/N>10)andfaintclusters(typ-ically4≤S/N≤8).Thesearediscussedfurtherin§5.2.2.Wedefinedthefieldregionsforeachgalaxyintwoways:(1)regionswithin3σofthelocalbackground,and(2)theentiregalaxyminusthe1–3targetedluminousclusters(thoseusedtodeterminetheslitorientation).Thespatialpixelsdefinedasbelongingtothefieldwerethensummedtogiveaone-dimensionalfieldspectrum.Notethatinregionswherethebackgroundchangesrapidlyalongtheslit,itcanbedifficulttodeterminetheappropriatelocallevel.Toaddressthisissueandanylingeringconcernsthatourfirstdefinitioneliminatessmallgroupsofindivid-ualOorBstarsfromtheextractedfield,weanalysedbothextractedfieldspectraforeachgalaxy.Weminimizedcon-taminationfromluminousclustersbyavoidinglightfromthewingsoftheirprofiles.Spatialprofiles,alongwithfieldregionsaccordingtoourfirstdefinitionarepresentedinFigure1.

Notethatanumberofgalaxies,particularlythosewithalargenumberofclustersintheslit(e.g.,NGC3310andNGC4449),alsohavemany“bumpsandwiggles”intheirfieldportions(thosewithin3σofthelocalbackground).Infact,inmostgalaxies,particularlythosewhicharenearby,starclustersarenotembeddedinasmoothbackgroundofUVlight.Thefieldalwaysshowssomestructure.Isthisstructureduetovariablereddeningordiscretestellarpopulations?In§5.4wediscusstheresultsofmeasuringthespatialextentorsizeofnumerousfaint“peaks”visi-bleinstarburstfieldregionsthroughourslits.Wefindingeneralthatasignificantfractionofthesepeaksareunre-solved,andthosewhichareresolvedhavesizeswhicharecomparabletoluminousclustersobservedineachgalaxy.Additionally,wewereabletomatchafewofthebrighterpeaksobservedintheSTISfieldregionswithdiscrete,faintsourcesindeeperarchivalWFPC2images.Takentogether,thesepointssuggestthatatleastsomeofthefaintpeaksseenalongthespatialdirectionareactuallydiscretestellarpopulations(possiblyafewstarsorfaintcompactclusters),ratherthanvariationsinextinctionorrandomfluctuationsinthebackgroundlevel.

4

2.4.SelectionEffects/Biases

Wenotethatthepreciselocationsdefinedasthe“field”ineachgalaxydependonanumberoffactors,suchasto-talexposuretime,galaxydistance,andlocalbackgroundlevels.Thusthe“field”aswehavedefinedit,issubjecttoanumberofselectioneffects/biases.Forexample,deeperobservationsmightallowforadditionalsmallbumpsandwigglesinthespectrumtobeaddedtothe“object”list,astheirS/Nisincreased.However,becausewehavecol-lapsedalargenumberofpixelsalongthespatialdirection,ourdefinitionsaresomewhatrobustagainstthedepthoftheobservations.Ourdefinitionof“field”isalsodistancedependentinthesensethatweareunabletouniformlydefineaminimumobjectmassatagivenagewhichisse-lectedasacluster.Moredistantgalaxiesaremorelikelytohavehighermassclustershidinginthefield.Ifsomeoftheseclustersareveryyoung,thanwewouldexpectthesignatureofmassivestarsintheextractedfieldspectratoincreasewithgalaxydistance.Potentially,someofthelessmassiveobjectsthatwehavedefinedasclusters(thisonlyappliestogalaxiescloserthan∼5Mpc)mayberandomsuperpositionsofseveralfieldOstars,orpossibly“scaledOBassociations”orSOBAs(Hunter1999).

Oursecondextractionofthefield,wherewehaveonlyexcisedtargetedclusters,allowsustodirectlyprobethisissue.In§5.2.2wepresentresultscomparingthestellarcontentinthefieldandclusterspectrawithinstantaneousburstSTARBURST99models.Althoughthesemodelsarenotagoodphysicalrepresentationofthefield,theydoprovideasimplewaytoquantifythemassivestarcontent.Wefoundvirtuallynodifferenceinthebestfitages,andhenceinthemassivestarcontent,inourtwodefinitionsofthefieldforeachgalaxy.

2.5.SpatialProfilesAlongtheSlit

Figure1showstheintegrated1250–1700˚A

fluxalongthespatialdirectionofourlongslitspectra.Inadditiontoallowingustodefineclusters/fieldportions,thesespatialprofilesgivesomeinsightintothestellarvariationsacrosseachgalaxy.InTable2wepresentthetotalfractionofFUVlightfromstarclustersobservedineachpointing.Wesummeduplightfromclusters(alongthespatialdi-rection)andcomparedwiththetotallightalongtheslit.Thefractionoflightinthefieldisassumedtobethatnotfoundinclusters.Wederivevaluesforthefractionoflightinthefieldportionsoflocalstarburstgalaxiesrang-ingfromroughly25%to70%.However,ourslitlocationstargetedUV-brightclusters,andwheneverpossibleorien-tationswerechosentomaximizethenumberofsuchclus-tersintheslit.Thustheparticularlocationsobservedineachgalaxyarebiasedagainstthefield.ThefieldfractionspresentedinTable2representlowerlimitstothefieldcon-tribution(andanupperlimittotheclustercontribution)intheFUV,andareroughlyconsistentwiththe∼50–80%fieldcontributionderivedbyMeureretal.(1995)whenconsideringnearbystarburstsintheirentirety.Below,webrieflydescribethespatialcutsforeachsamplegalaxy.Mkn33:Therearefieldregionsoneithersideof,andbetween,twoluminousUVregionswhichcontainmultipleclusters.

He2-10:Wepreviouslymadeadetailedstudyofstar-burstregionA(Chandaretal.2003).Alongthespatial

directionofourslit,therearefiveindividualcompactclus-tersonanelevatedbackgroundatUV-opticalwavelengths.Thenatureofthisdiffusefieldlightwasinvestigated,andfoundtoincludeasignificantpopulationofmassivestars.Thispopulationcouldariseinalargenumberoflowermasscompactclusters,orfromdiffuseSOBAs.Becausethedensityofputativelowermassclusterswouldhavetobeverylarge,weconcludedthatSOBAsformedcoevallywiththecompactclusterswerelikelythemainstellarcon-tributortothemassivestar-richfield.

NGC1741:Thefieldregioninthisgalaxyincludesabroad,lowlevelcomponent(seeFigure1).

NGC3125:ThereissomediffuseUVemissionobservedbetweenthreebrightclusters.Thefieldincludesanumberoffaintpeaks.

NGC3310:Thespatialcutofthisspiralgalaxyshowsamultitudeofpeaks.Basedonthedefinitiongivenin§2.3,wedetecttenclusters.Thefieldregionincludesanumberofveryfaintpeaks.

NGC4214:InFigure2weshowanenlargementofthespatialprofilealongtheSTISslitforpartofthefieldinNGC4214.Faint,individualpeaksareclearlyseen.ThefieldappearsqualitativelysimilartothatinNGC5253,whereanumberofbumpsandwigglesareseenonabroad,elevatedUVbackground.

NGC4449:ThisgalaxyissimilartoNGC3310inthespatialdirection,wherearelativelylargenumber(12)ofindividualclustersarefound,andthefieldincludesaddi-tional,faintpeaks.

NGC4670:ThisgalaxyhasaprofilesimilartothatseeninHe2-10—thereisasomewhatpeakedplateauofdiffuseemission,withbrightclusterssuperposed.Thereishow-ever,slightlymorestructureseeninthefieldofNGC4670thanthatinHe2-10.

NGC5253:ThisgalaxywasstudiedbyTremontietal.(2001).ThereisanelevatedUVbackground,withanum-berofsmallpeaks(includedinthefield),andlargerpeaks(definedasindividualclusters).

NGC5996:Inadditiontothetargetedcentralcluster,acoupleofotherfainterclustersandfieldregionsareob-servedintheslit.

NGC7552:Therearetwobrightclustersonanele-vatedbackgroundintheslit,withsomefieldportionsin-between.

TOL1924-416:Thereisoneveryluminouscluster,plusonefainterone.Thefieldconsistsofanumberoflowlevelbumpsandwiggles.

3.COMPLEMENTARYARCHIVALWFPC2IMAGES

3.1.DataandReduction

Tofurtherconstrainpropertiesofthefieldregionsstud-iedinthiswork,wedownloadedavailablearchivalWFPC2imagesforourtargetgalaxies.Theseallowthestudyofthestellarpopulationsalongtheslitatdifferentwave-lengths,aswellasprovidingabroaderviewofthestel-larpopulationsinourtargetgalaxies,andnotjustthepointingstargetedbyourSTISlongslitspectra.Becausemuchoftheavailablearchivaldataisnotverydeep,ordoesnotincludeobservationsinseveralfilters,werestricttheWFPC2imageanalysistothethreeclosestgalaxies,NGC4214,NGC4449,andNGC5253,whereindividualstarscaneasilybedetected,andtheUVspectraareleast

subjecttoissuesrelatedtodistancebias.ThesethreetargetgalaxiesallhaveobservationsinfilterswhichcanbeconvertedtoJohnson-CousinsU,V,andI.InTa-ble3,wecompileinformationonthesegalaxiesandonthearchivalWFPC2observationsusedinthiswork.Im-ageswereprocessedthroughtheHSTon-the-flycalibra-tionpipeline(whichautomaticallyselectsthemostup-to-datecalibrationfilesduringprocessing).Multipleimageswerecombinedtoeliminatecosmicrays.

WerantheobjectfindingalgorithmSEXTRACTOR(Bertin&Arnouts1996),tolocateallobjects(individualstars,clusters,andahandfulofbackgroundgalaxies)intheF336Wimages(theclosestmatchtothewavelengthrangeofourSTISobservations).Weusedathresholdof3σabovethelocalbackgroundlevel,whichuponvi-sualinspectionappearedtodetectallobvioussources.Ingeneral,adetectionwhichisthemeanofthelocalback-groundplus3timesthestandarddeviation(σ)ofthisbackground,eliminatesrandomsurfacebrightnessfluctua-tions,andleadstodetectionofactualobjects.TheF336Wfilterhasasignificantredleak,˚causingafractionofanob-ject’sfluxlongwardof4000Atobedetectedinthisfilter.Birettaetal.(2000)showthattheredleakinthisfilterisgenerally<∼5%ofthetotalfluxforstellarpopulationsdominatedbyK3Vorearlier-typestars,whichisappro-priateforthemajorityofobjectsobservedinthethreeclosestgalaxies.However,oneclusterinNGC5253isofparticularinterest,cluster5fromCalzettietal.(1997).Thisisahighlyextincted,veryyoungcluster,whichemitsstrongthermalradioemission,butisalsoseeninopti-cal/ultravioletimages.Notethattheexactphotometryforthissingleobjectdoesnotaffectouroverallconclu-sions.

3.2.Photometry

AperturephotometrywasobtainedusingthePHOTtaskinDAOPHOT(Stetson1987).Ithasbeenestab-lishedthataperturecorrectionsindifferentHSTWFPC2filtersshowverylittledifferencewithobjectsize(Holtz-manetal.1996;Larsen1999).Thus,weusedasmallapertureradius(r=3pixels)todetermineobjectcolors,inordertominimizecontaminationduetoneighboringsourcesandtheimpactofuncertaintiesinthebackgrounddeterminationwhenfainterobjectlightisincluded.How-ever,thereisasignificantfractionoflightoutsidethisra-dius,whichvariesbasedonhowextendedanobjectis,andwhichdirectlyimpactsthetotalmagnitudemeasurements.Inordertomeasureaperturecorrectionsforoursources,wefirstmeasuredthesizesofalldetectedobjectsusingLarsen’s(1999)ISHAPEroutine.Detailsofsizemeasure-mentsaregivenbelow.Sincethesourceshavealargerangeofsizes,whichleadstoverydifferentaperturecorrections,welinkedtheaperturecorrectionstothemeasuredsizeforeachobject.Weusedthepreviouslymeasuredaper-turecorrectionsfromLarsen&Brodie(2000)forISHAPEKING30models(for∆m3−>5and∆m5−>30),whicharecompiledintheirTable1.Thesevaluesaregivenfordis-cretevaluesofthemeasuredFWHMinpixels.Wefitasecondorderpolynomialtothesevalues,andusedthisequationtocalculateaperturecorrectionsforeachobjectindividually.

8see

http://www.noao.edu/staff/dolphin/wfpc2

5

CTEcorrectionswereperformedasdescribedinDol-phin(2000).8ThecorrectedinstrumentalmagnitudeswereconvertedtostandardJohnson-CousinsU,V,andImagnitudes.UsingEquation8andTable7ofHoltzmanetal.(1995),themagnitudeswerederivediterativelyusingWFPC2observationsintwofilters.

3.3.SizeMeasurements

Intrinsicsizesforourentireobjectsampleweremea-suredusingtheISHAPEroutine.Adetaileddescrip-tionofthecodeisgiveninLarsen(1999),alongwiththeresultsofextensiveperformancetesting.Essentially,ISHAPEmeasuresintrinsicobjectsizesbyadoptingananalyticmodelofthesourceandconvolvingthismodelwitha(user-supplied)pointspreadfunction(PSF),andthenadjustingtheshapeparametersuntilthebestmatchisobtained.Kingmodelprofileswithconcentrationpa-rametersofc=30wereconvolvedwithaPSF,andfitin-dividuallytoeachobject.ISHAPEestimatestheFWHMofeachcluster(inpixels),whichwasthenconvertedtothehalf-light(effective)radius,rISHAPEmanual.TheinputPSFeff,asdescribedinthetothisalgorithmiscru-cial.WecreatedaPSFbyhand-selectingstarsintheimage,andthencomparedtheresultswiththoseofasub-sampledTinyTimPSF(whentheTinyTimPSFwasused,convolutionwiththeWFPC2diffusionkernelwasimple-mented).WefoundthatthesizeestimatesfromISHAPEusingthesetwoPSFsdifferedbylessthan20%.FinalmeasurementsweremadeusingtheTinyTimPSF,sincethisiseasilyreproducible.AsinglePSFwasgeneratedforthePCCCD,andonefortheWFCCDs.Weassumethatobjectswith∆FWHM(FWHMmeasured−FWHMPSF)of0.2pixelsorlessareunresolved,pointsources.

4.ANALYSIS

4.1.DerivingStellarProperties

Onewaytoassess(any)differencesbetweenclustersandthefieldinlocalstarburstsistoquantifythestellarcon-tentofeach.Isthefieldlackinginmassivestarsrelativetoneighboringclusters?Theanswertothisquestioncanbeusedasastartingpointtostudythecompositionofgalax-ies,andmakeinferencesconcerningthepropertiesofstarformation.OneofthemainadvantagesofusingUVspec-troscopytoassessthedifferencesbetweenstellarcontentinclustersandthefieldistheshorttimescalesoverwhichmassivestarsevolve.ToillustratethediagnosticpowerofUVspectroscopyinassessingmassivestarcontent,inFigure3wepresentexamplespectrafromvariousSTAR-BURST99modelswhichclearlyshowtheeffectmassivestarshaveoncompositeFUVspectraofstellarpopula-tions,particularlyontheNIVλ1240,SiIVλ1400andCIVλ1550broadPCygniprofiles.

Inordertomakeaquantitativecomparisonbetweenthestellarpopulationsdominatingclustersandfieldregions,wecreatedcomposite“cluster”spectra,whicharetheun-weightedsumofmultipleclusters.Whentherewereanumberofclustersavailable,wecombinedthembylumi-nosity,makinganarbitraryseparationbetweenbrightandfaintclusters,dependingonspecificsofclustercharacteris-tics(luminosities)withinagivengalaxy.Ingeneral,sinceyoungerclusterstendtobemoreluminousthanolderones

6

ofcomparablemass,thiswillroughlydivideclustersbyage.Toderivequantitativeclusterparameters,wethencomparedereddened(reddeningdiscussedbelow)clusterspectratoagridofinstantaneousburstSTARBURST99models(Leithereretal.1999),andrecordedtheresultsinTable4.Instantaneousburstmodelsareappropriateforcompactclusters,sincetheyarecoevalstellarpopulationswithsmallcrossingtimes(<0.1Myr)comparedwiththemodels.Whileinstantaneousburstmodelsarenotanidealphysicalrepresentationoffieldregionsextendingoverhun-dredofparsecs,theyprovideaconsistentwaytocomparethestellarcontentofclustersandthefield.BecauseweareworkingintheUV,thefieldspectra,eventhoughtheyprobablycontainamixofages,willbedominatedbysig-naturesoftheyoungeststellarpopulations.In§5.5.2wecompareourfieldregionswithcontinuousstarformationmodels.

STARBURST99modelshavebeenoptimizedtorepro-ducemanyspectrophotometricpropertiesofgalaxieswithactivestarformation.Detailsoftheinputstellarparam-eterstoSTARBURST99canbefoundinLeithereretal.(1999);herewebrieflysummarizethemodelparametersusedinthiswork.TheSTARBURST99UVspectralli-braryisavailablefor2metallicities:solarandLMC/SMC(∼1/4solar).Ingeneral,weusedthemetallicitymodelwhichprovidestheclosestmatchtoagivengalaxy’sabun-dance(tabulatedinpaper1).However,forsomegalaxiestheabundanceisin-betweenthetwomodels.Forthese,wecomparedtheresultsfrombothabundancemodels,andadoptedtheonewhichresultedinthebetterfit(lowerχ2).Ingeneral,ageestimatesforindividualclustersareingoodagreementbetweenthetwomodels.

Fortheinstantaneousburstmodels,weadoptedastan-dardSalpeter(1955)initialmassfunction(IMF),withloweranduppermassesof1M⊙and100M⊙respec-tively.ArgumentsinfavorofaSalpeterIMFaresum-marizedinLeitherer(1998),andadiscussionofvariousstudiesavailableintheliteraturecanbefoundinTremontietal.(2001).Highmasslossrates,asrequiredbystellarevolutionwereassumed(Meynetetal.1994).

Inordertodetermineintrinsicpropertiesforastellarpopulation,theonedimensionalspectramustbecorrectedfortheeffectof(foreground)Galacticextinction,aswellasforthedustobscurationintrinsictothestarburstitself.WeassumeforegroundextinctionvaluesfromtheSchlegeletal.(1998)maps,andadopttheextinctioncurveofFitz-patrick(1999).Todeterminethereddeninginternaltothestarburstitself,wecomparedtheobservedcontinuumofeachclusterandfieldspectrumwithstellarevolutionarymodels.TheintrinsicFUVspectraldistributionofyoung,unobscuredsinglestellarpopulationsfollowsapowerlaw,witheffectivespectralindexβ,whereFpowerlawexponentfromthatλ∝λβ.Anyde-viationofthepredictedbytheoreticalmodelsisassumedtobeduetotheeffectsofdust.TheintrinsicUVspectralenergydistributionsofanyyoung(<10Myr)starburstpopulationistypicallynearβ∼−2.6.Thefitforβwasperformedoverthespectralregion1240–1600˚A.Toaccountforthespectralfeatures(whicharemostlyinabsorption),weperformedthefitit-erativelywithrejectionthresholdssetat2σforthelowerboundanda3.5σupperbound.

Wedeterminedwhichmodel-ageprovidedthebestfittoourclustersandfieldspectrabycomparingthe(fore-ground+intrinsic)extinctioncorrectedobjectspectrawithinstantaneousburstmodelsfromSTARBURST99withagesfrom1–100Myrinstepsof1Myr.ModelfittingcloselyfollowsthetechniquesdevelopedbyTremontietal.(2001),andthereaderisreferredtothatworkfordetails.Briefly,inordertomaximizethesensitivityofχ2tospec-tralregionsmostsensitivetotheageandstellarcontentofthestarburst,eachpixelinthespectrumisclassifiedasbelongingtoeitherthecontinuum,aninterstellarline,orastellarwindline(basedonthedetailedlineanalysisofdeMelloetal.2000).Thesewerethenassignedweights,withinterstellarlinesbeinggivenaweightofzero,con-tinuumaweightofone,andstellarwindlinesaweightoften.Becausenearlyallofthefeatureswhicharesen-sitivediagnosticsoftheageofastellarpopulationalsohavesomeinterstellarcontamination,theinterstellarcoreoftheNVλ1240,SiIVλ1400,andCIVλ1550lineswerealsomaskedout.ThiseffectivelyeliminatestheISMfromconsideration,andreliesonlyonstellarsignaturestode-rivetheirproperties.Theroutinereturnsthebestfitage(minimumχ2),whichisgiveninTable4.

Toquantifyerrorsassociatedwithourbestfitmodels,weutilizedthebootstraptechnique.Theresidualsofthebestfitwererandomlyresampledandaddedtothemodelspectrum,andthenrerunthroughtheautomatedfittingroutine1000times.Theerrorbarsassociatedwiththe90%confidenceintervalwerederivedfromahistogramofthederivedages.TheageuncertaintiesarealsogiveninTable4.Forclusters,agescanbederivedtowithin±1Myr,highlightingthestrongeffectthatmassive,short-livedstarshaveontheUVspectrum.

4.2.SummaryofModelFittingbyGalaxy

Figure4showscompositeclusterandfieldspectraforeachgalaxyinoursample.TheresultsfromcomparisonwithinstantaneousburstmodelsaregiveninTable4,anddiscussedgenerallybelow.Notethatthefigures,analysis,anddiscussionarebasedonourfirstdefinitionofthefield,wherewehaveincludedallregionswithin3σofthelo-calbackground,sincethisisamoreconservativeapproachanddoesnotincludeobviousstarclusters.However,wehaveverifiedthattheresultspresentedheredonotchangesubstantiallyforthesecondfielddefinitionineachgalaxy.Mkn33:Figure4showsthecompositeclusterandfieldspectraforMkn33.Thefieldhasweaksignaturesofmas-siveOstars,andhasabestfitageof6Myrwhencom-paredwithinstantaneousburstmodels.Thisisslightlyolderthanfoundforthecompositeclusterspectrum.Ingeneral,wefoundthatseparatingclustersintoabrightandfaintcategorykeptanyindividualclusterfromseverelybi-asingtheluminosityweightedageofthecompositeclusterspectra.

He2-10:Studiedinapreviouspaper(Chandaretal.2003),themainstarburstregion(A)showsindividualcompactclustersonanelevatedbackgroundatUV-opticalwavelengths.Thenatureofthisdiffusefieldlightwasin-vestigated,andfoundtoincludeasignificantpopulationofmassivestars.WeconcludedthatalargenumberoflowermasscompactclustersordiffuseSOBAscouldberesponsible.Thetailsofthisdiffuseemissionextendout∼100pcfromstarburstA.Thediffusefieldlightisfainter,butshowsthesamespectralsignatureasthatinstarburstregionA.Therefore,weseethesignatureofmassivestars

forminginthe“field”inthisactivelystarburstinggalaxy.NGC1741:Figure4showsasequenceofthree“com-posite”stellarpopulations.Thetoppanelshowsthemostluminousclusterinourslit,cluster1,thesecondpanelisanaverageoffainterclusters2,3,and4,whilethebottompanelshowsthefieldspectrum.Thereisacleargradientinthestellarpopulationsinthisgalaxy,astracedbythestrengthofthestellarwindlines—thesearestrongestinlu-minouscluster1,weakerinclusters2,3,4andweakerstillinthefield.Theseobservationssuggestanagesequence,whichisquantifiedinTable4.

Cluster1isquiteyoung,withverystrongNVλ1240andSiIVλ1400linesithasabestfitageof3Myr.Theotherthreeclustersallhaveagesof6Myr.Thefieldhastheoldestcompositeageof7–8Myr,de-pendingslightlyonwhichmetallicitymodelisadopted.Regardless,thereisnoobvioussignaturefromthemostmassivestarsinthefieldregion.

NGC3125:Theaveragespectrumofthetwomostlu-minousclustersshowssignificantlystrongerwindlines(inparticularNVλ1240andSiIVλ1400)relativetothefield.ClusterNGC3125-1alsoshowsstrongWRsigna-tures,includingtheNIV]1487˚A,NIV1718˚Alines,andtheHeII10˚AlinetypicallyfoundinWNstars(seeChandaretal.2004foradetailedderivationoftheprop-ertiesforthisunusualcluster).FitstoSTARBURST99instantaneousburstmodelsgivemeanagesof3Myrforbothclusters,and8Myrforthefield.

NGC3310:Thefivebrightestclustershaveameanageof5Myr,andfivefaintoneshaveameanageof7Myr.Thefieldhasabestfitageof8Myr.

NGC4214:Thebrightestclusterhasstrongwindlinesandayoungage(4Myr).Whenweaveragetheindividualfainterclusterspectra,wefindthattheseobjectsarenotonlyfainter,buttheyarealsoolderonaverage,withameanageof7Myr.Ourbestfittothefieldgivesanageof8Myr.

NGC4449:ThemeanclusterspectrumshowsPCygniprofiles,andhasaformalageof5Myr.Thefieldshowslittleevidenceforthepresenceofmassivestars,andhasabestfitageof7Myr.

NGC4670:Themostluminouscluster,NGC4670-1is7Myrold.Threefainterclusters(2,3,4)arecoeval,withagesof5Myr.Notealsothatthesefainterclustersarelo-catedveryclosetooneanother,whilecluster1islocatedslightlyfurtheraway.Thecompositefieldshowstheweaksignatureofmassivestars,andhasameanageof6Myroldwhencomparedwithinstantaneousburstmodels.NGC5253:Tremontietal.(2001)findadifferenceinthemeanagesofthecompositeclusterandfieldspectra.Re-doingtheextractionindependently,wefindameanageforthenineextractedclustersof4Myrandameanageforthefieldregionsof7Myr,similartotheearlierresults.NGC5996:Thebrightestclusterisalsotheyoungest,at5Myr.Thestrengthofthewindlines(particularlytheSiIVλ1400feature)inthecompositefaintclusterspec-trumandthefieldestablishesthatmassivestarsresideinboththefaintclustersandthefield,eventhoughtheseappeartobesomewhatolderthanthebrightestcluster.NVλ1240andCIVλ1550areslightlymorepronouncedinthefaintclustersthanthefield,sothesemaycontainsomewhatmoremassivestarsthanthefield.

7

NGC7552:Thetwobrightclustershaveameanageof5Myr,whilethefieldappearsslightlyolder,at6Myr.TOL1924-416:Thebrightestclusterhasanageof1Myr,whiletheyoungeststellarpopulationcontributingtotheUVfieldlighthasanageof7Myr.

4.3.RadialProfiles

Radialprofilesforobjectsinnearbygalaxiescanbeusedtodeterminewhetheranobjectisextendedornot.Ifanobjectisresolved,itislikelyaclusterorgroupofstars;howeverunresolvedobjectscanbeeitherstars,chancesu-perpositions,surfacebrightnessfluctuations,orcompactclusters.Althoughsizeestimatesaretypicallymadefromimaging,hereweattempttoalsousetheinformationalongthespatialdirectionoftheslittodeterminewhetherclus-tersandbumps/wigglesinthefieldareresolved,andfromtherereachsomeconclusionconcerningthenatureofthediffuseUVlight.ThisisparticularlyvaluablesinceSTISpixelssampleevensmallerscales(0.025′′pix−1)thanthePC(0.0455′′pix−1)CCDonWFPC2.

TomeasuretheFWHMofbumps/wigglesinthefield,wecomparewiththeFWHMmeasurementofabrightstar(GD71)observedwiththesamegratingandslitcombina-tion.WemeasuretheFWHMofstarGD71tobe∼0.08′′,andtakethistorepresentapointsource.Becausethesizeestimatesforthefaintpeaksinthefieldarelikelynotveryaccurate,weonlydeterminewhethertheseappearresolvedornot,relativetothemeasurementofGD71.Wediscusstheresultsofthisexercisein§5.4.

5.DISCUSSION

5.1.IsScatteredUVLightResponsiblefortheField?CouldthescatteringofUVphotonsexplainthepresenceofdiffuseUVemissioninlocalstarburstgalaxies?Inthisscenario,UVphotonsoriginateinyoungstarsembeddedinthemassiveclusters.Sincemostofthenon-ionizingUVra-diationproducedinstarformingregionsescapesthelocalcluster(e.g.Misiriotisetal.2001;Hippeleinetal.2003),itisfreetobescatteredbyinterstellardust.RecentGALEXUVimagesofnearbyspiralgalaxiesclearlyshowthepres-enceofdiffuseUVemissionbetweenspiralarms(e.g.,M101;Popescuetal.2005)andatlargegalactocentricradii(e.g.,M33,M31,andM83;Thilkeretal.2005a,b).Whencombinedwithobservationsatlongerwavelengths,thespectralenergydistributions(SEDs)ofspiralsarewellreproducedbygalaxycomponentswhichincludealayerofdiffuselydistributedcolddust(e.g.,Popescuetal.2000).Far-IRandsubmillimeterimagingofnearbyspiralshavedirectlyshownthatthislayerofcolddustcoverstheentireextentofthedisk(e.g.Haasetal.1998;Hippeleinetal.2003;Popescuetal.2005).InM101,acomparisonofGALEXUVandISOfar-IRimagesshowedthattheratioofUV/far-IRemissionvariesbetweenarmandinter-armregions(Popescuetal.2005).Thesedifferencesareconsis-tentwiththeinter-armUVemissionbeingscatteredlightoriginatingfrommassivestarsinthespiralarms.Simi-larly,thediffusefar-UVemissionobservedbeyondtheHαdiskinM33,M31andM83(Thilkeretal.2005a,b)isin-terpretedasnon-ionisingUVradiationescapingfromtheoutermostHIIregionsandthenscatteringoffdustgrainsfurtheroutinthedisk.

CouldthediffuseUVlightobservedinlocalstarburst

8

galaxiesresultfromsuchscatteringofUVphotons?Scat-teringbydustcanchangetheoriginalspectralshape(i.e.,makethespectrumappearbluer),butcannotaddorsub-tractnarrowspectralfeatures,suchasPCygniprofiles.Inthiswork,wehaveshownthattheyoung,massivestarswhichdominatetheUVfluxfromclustershaveanO-typespectrum,withprominentP-Cygniprofiles.Bycontrast,theUVlightoriginatinginthefieldshowsaB-typestellarspectrum.Becausethespectrafromthetwoenvironmentshavedifferentstellarfeatures,massivestarspoweringtheluminousclustersarenottheoriginalsourceforanyUVphotonsscatteringoffdustgrains.However,iflowermass,B-stardominatedclustersarefoundinthefield,wecannotruleoutthepossibilitythatphotonsleakingoutfromtheselowermassclustersarescattered,andthusproducethefieldUVlight.Regardless,thedifferencesinspectralfea-turesobservedbetweenthefieldandclustersdemonstratesthattheUVemissionineachenvironmentoriginatesinadifferentstellarpopulation.

HowcanourevidencethatthediffuseUVlightinstar-burstoriginatesina(faint)stellarpopulationberecon-ciledwiththeclaimthatthediffuseinter-armUVlightinM101isduetoscatteringoffdustgrains?First,thegeometryanddistributionofdustinlargespiralsmaydiffersubstantiallyfromthatindwarfsystemssuchasthosewhichoftenhoststarbursts.Second,Popescuetal.(2005)pointoutthateveninthemostextremeinterarmregionsdiscretesourcesofUVemissionareobservedinfull-resolutionGALEXimages.Giventhelow-resolutionoftheGALEXimages(6′′FWHM)withrespecttoHST,itisplausiblethatsomefractionofthediffuseinter-armemissioninM101arisesfromadispersedstellarpopulationratherthanfromscatteringduetodust.Forexample,theGALEXimagesarenotsufficientlydeep(anddonothavethespatialresolution)todetectindividualBstars(whichareaplausiblecontributortothediffuseUVfieldlight).Rather,theseobservationsareappropriateforstudyingstellarcomplexeswhichhavesizesofmanytenstohun-dredsofparsecsatthedistanceofM101.AnanalysisofWFPC2imagesforNGC4214,NGC4449,andNGC5253clearlyrevealapopulationofdispersedbluepointsources,whichareconsistentwithapopulationofB-supergiants(§5.3).WesuggestthatdeepUVimagingofinterarmre-gionsinspirals,withsufficientdepthtorevealthepresenceofindividualBstarscouldresolvewhetherthediffuseUVemissioninM101arisesfromadiffuselayerofdust,orfromadiscretestellarpopulation.

5.2.GeneralSummaryoftheStellarContentinField

RegionsofStarbursts

5.2.1.FUVslopemeasurements

InTable5wecompileslopes,β,measuredforthecom-positefieldandclusterspectraaftercorrectionforfore-groundextinction,butwithnocorrectionforextinctionduetothehostgalaxy.Detailsoftheβmeasurementswereprovidedin§4.1.Themainuncertaintiesintheval-uesofβcomefromthefactthatapowerlawdoesnotalwaysprovideagoodfittothedata,mostlyduetolineblanketinginthespectra(althoughwehaveexcludedthemost˚severelylineblanketedspectralregionslongwardof10A).

Ingeneral,theintrinsicslopeofastellarpopulation

becomesredderwithage.However,acomparisonoftheslopesforsinglestellarpopulationsyoungerthan∼10Myr(typicalagesofclustersobservedinourstarburstgalax-ies),withthoseforcontinuousformationmodelswhichfitourdatashowthatbothhavesimilarvalues.Forex-ample,acontinuousstarformationmodelwithSalpeterIMFanduppermasscutoffof30M⊙hasanintrinsicslope,β=−2.5(see§5.5.2foradiscussionofcontinu-ousstarformationmodelsandtheircomparisonwiththedata).Becausethedominant/youngestUVpopulationsintheclustersaresomewhatyoungerthanthoseinthefield(asdiscussedindetailbelow),onemightexpectthattheintrinsicslopefortheclustersissomewhatbluerthanforthefield.

InTable5however,βmeasurementsforthefieldappearcomparabletoorbluer(steeper)forhalf(6/12)ofthefieldspectrawhencomparedwiththecompositeclusterspectrainthesamegalaxy.BecausethespectralfeaturesintheUVallowustopreciselyage-datethestellarpopulationsintheclustersandthefield,weknowthatthedominantstarsinthefieldaregenerallyolderorlessmassivethanthoseintheclusters.Thereforeonemightexpectthatβfortheclusterswouldbebluerthanforthefield.However,ourstudyestablishesthatthefieldisnotcategoricallyredderthanyoungclustersinstarbursts.Amorelikelyexplana-tionfortheobserveddifferenceinslopesbetweenclustersandthefieldisextinctionvariationsbetweenstellarpopu-lationsresidingineachenvironment,withthefieldshow-inglessreddening.BecausetheUV-brightclustersarequiteyoung,itislikelythattheystillhaveatleastsomeresidualnatalISManddustsurroundingthem,leadingtoredderslopemeasurements.

Thebluer,lessreddenedslopesfoundinthefieldre-gionsofsomelocalstarburstswhencomparedwithstarclustershaveimplicationsfortheoverallextinctionesti-matesderivedforhighredshiftgalaxies.Thisisparticu-larlyimportantwhenUVspectraofwholehigh-zgalaxiesarecomparedwithnarrow-slitorsmall-apertureUVspec-traoflocalstar-forminggalaxies.Inferencesofdifferencesinstellarpopulationcompositionsand/orextinctionchar-acteristicsmaystemsfromthefactthattheUVspectrumofthelocalgalaxyisonlytargetingonecomponent(e.g.,onecluster)oftheentirestarformingregion.

5.2.2.CharacterizingtheFieldStellarPopulationWefindthattheoverallstellarcontentinourobservedSTISfieldregionsofnearbystarburstgalaxiescanbedi-videdintothreebroadcategories:theclearpresenceofOstars,aclearlackofOstars,andanintermediateclassshowingaweaksignatureofOstars.He2-10isuniquetooursample,withtheyoungestmeanfieldstellarpopula-tionofanysamplegalaxy,clearlyshowingthesignatureofOstars.Theotherextremeincludes7galaxies,whichshowfieldspectralackinginthemostmassivestars(ab-sentPCygniprofiles),similartothatfoundbyTremontietal.(2001)forNGC5253.ThiscategoryalsoincludesNGC1741,NGC3125,NGC3310,NGC4214,NGC4449,andTol1924-416.Table4showsthatthesehavebestfitagesof≥7Myr,andinspectionofthefieldspectrainFigure4confirmsthelackofmassivestars.ThethirdcategorycomprisesMkn33,NGC4670,NGC5996,andNGC7552,whichhavemeanfieldagesof6Myr,andshowweaksignaturesofOstars.

Theclosestgalaxies(i.e.thosewithin4Mpc;NGC5253,NGC4214,andNGC4449),wherewehavethebestspa-tialresolutionandtheeasiesttimedistinguishinglowlevelclustersfromthefield,allclearlylackbroadlineprofilesofNVλ1240,SiIVλ1400,andCIVλ1550thatarecharac-teristicofOstarwinds,instarkcontrasttothecompositeclusterpopulationsineachgalaxy.Thisresultholdsforbothfielddefinitions,whetherweareexcludingallpeaksabove>∼3σ,oronlyexcludingtargeted,luminousstarclusters.Thereforewearenotconcernedthatourdefini-tionhasaprioriexcludedOstarsfromtheextractedfieldspectra.Notsurprisingly,weseemorevariationinthefieldregionsofmoredistantgalaxies.Some,e.g.,NGC3125,NGC3310,NGC1741,andTol1924-416(allfurtherthan10Mpc),clearlylackthesignatureofmassivestars,andareverysimilartothefieldspectrafortheclosestgalax-ies.Others,suchasMkn33,NGC4670,NGC5996,andNGC7552,againmoredistantthan10Mpc,showweaksignaturesofOstars.Forgalaxiesinthislattergroup,ourfieldextractionlikelyincludessomeyoung,relativelymassiveclusters,whichprovidetheweakOstarsignature.Thisbiaswithdistanceisnotunexpected;however,itisgratifyingthatanumberofthemoredistantgalaxiesinoursampleshowaresultsimilartotheclosesttargets.Weconcludethatthefieldregionsoflocalstarbursts(exceptHe2-10)arenotconducivetotheformationofisolatedmassivestars(assuggestedisoccurringinthenuclearre-gionsofM51;Lamersetal.2002),intherandomfieldregionscoveredbyourlongslitpointings.

Forgalaxieswithmeanderivedfieldagesof≥7Myr,wefindthatthefaintclustersareonly1–3Myryoungerthantheyoungeststellarpopulationscontributingtothefieldregions.Implicationsfortheserelativelysmalldiffer-encesinagebetweenthedominantstellarpopulationsinclustersandthefieldarediscussedin§5.5.4.

Basedontheresultsdescribedabove,He2-10appearstobeuniqueinoursample.Becausethedominantstellarpopulationinthefieldformedcoevallywiththenearbyclusters,weestimatedtheUVcontributionofthecom-pactclustersinstarburstregionAtothetotalUVflux.Assumingthattheclusterswhichdidnotfallinourslithavethesameageasthosewhichwerestudied,wefindthat40%ofthelightcomesfromtheclusters,leavingtheremaining60%originatinginthefield.Thisisstillalowerlimitsincesomeclustersmayhavedissolved,butprovidesafirmlowerlimittotheamountofUVlightcomingfromclustersinthisstarburst.

OurmainresultfromanalysisofthestellarcontentofclustersandthefieldregionsofstarburstsisthatthefieldgenerallyshowsweakerorabsentPCygniprofilescom-paredwithclusters.Thusthefractionofhighmassstarsthatarevisibleissmallerinthefieldthaninthebrightclusters.Herewehavesimplyshowcasedthisresultbypresentingthebestfitagesderivedbycomparinginstan-taneousburstevolutionarysynthesismodelswithourex-tractedspectra.Althoughthisisnotthebestphysicalrepresentationofthefield,itisasimpleexercisewhichillustratesthedifferenceinmassivestarcontent.Thisre-sultinstarburstsissimilartothatfoundforOstarsintheGalaxyandLMC.VandenBergh(2004)usedacatalogofGalacticO-typestars(Maiz-Apellanizetal.2004)andfoundthatO-typestarsinclustersandassociationshaveearliertypes(presumarlylargermassesoryoungerages)

9

thanthoseinthegeneralfield.IntheLMC,Masseyetal.(1995)findsthatalthoughmassivestarsareborninthefield,theyformmorerarelyinthisenvironmentthaninclustersandassociations.

Couldourobservedlackofmassivefieldstarsresultfromstatistics,duetotherelativelysmallareascoveredbyourSTISslit,orpossiblyduetomodeststarformationrates?Inordertoassessthispossibility,weuseourex-tractedspectratoestimatethemeanstarformationrate(

SFRinthefieldregionsoflocalstarbursts,

wecompareourdereddened(forbothforegroundandin-trinsicextinction)fieldluminosityat1500˚A(correctedfordistance)withthatpredictedbyacontinuousSTAR-BURST99modelwithSalpeterIMF.Theparametersusedforthiscalculation,alongwiththederivedfield

SFRfor

massivestarsbyafactorof2.16toextendtheIMFdownto1M⊙,wefindvalueswithinafactor∼2–3forthefivegalaxiesincommonbetweenthetwoworks(NGC3310,NGC4670,NGC5253,NGC7552,andTol1924−416);ahighvalueforthe

10

arymodelpredictionsofBruzual&Charlot(2003)forstarclustersasafunctionofage,withthreeseparatemetallicitymodels.AlthoughlocalstarburstgalaxiestendtohaveLMC/SMC-typemetallicity,thetracksfortheselowermetallicitiespoorlyreproducedobservedcolorsofredgiantstars(Massey&Olsen2003).Theagreementbetweenmodelsandobservationsarebetteratsolarmetal-licity,andthereforeweincludeclustertracksatthismetal-licity.ThebottompanelineachfigureplotsM−Icolor.NoneofthedatahavebeencorrectedVversustheVforanyinternalextinction.

Foreachgalaxy,NGC4214,NGC4449,andNGC5253,theresolvedandunresolvedpointsfallinthesamepa-rameterspace.Ingeneral,theU−Vvs.V−Icolor-colordiagramsofresolvedobjectsdetectedinNGC4214,NGC4449,andNGC5253showamostlyyoungstellarpopulation(<∼10Myr)whencomparedwithstellarevo-lutionarymodelsofstarclusters.Theseresolvedobjectscontinuedowntorelativelyfaintmagnitudes.InspectionoftheWFPC2imagessuggeststhatsomeoftheobjectswhichhave∆elsareactuallyFWHMmeasurementsgreaterthan0.2pix-blendsoftwoormorestars.However,themajorityofresolvedobjectsappeartobeindividualsources.Theseresolvedobjects,whichappeartobegoodstarclustersplusahandfuloffaintbackgroundgalaxies,haveluminositiesextendingdowntoatleastMV=−5,despitetheirverybluecolors.Wealsoseefromthelo-cationintheWFPC2imagesthatindividual,bluepointsourcesaredispersedthroughouteachstarburstgalaxy.Theverybluecolorssuggestthattheseareyoung,mas-sivestars.However,withoutspectroscopy,thedegeneracyinopticalcolorsmakesitdifficulttodeterminewhethertheseareOorBstars.BasedonthefieldsignaturefoundinourSTISspectroscopy,atleastinthesethreegalaxies,thedispersedpopulationofbluepointsourcescannotbeOstars.Weconcludethatthecombinationofphotome-tryandspectroscopysupportsthepresenceofadispersedpopulationofBstarsineachstarburst.

IntheCMDsplottedinthelowerpanels,wedon’tseeevidencefordifferencesintheabsoluteluminositiesofre-solvedandunresolvedsources.Inallthreegalaxies,wefindunresolvedsourceswhichhaveabsoluteVmagnitudesbrighterthan−8,whichisrelativelyrareforindividualstars.Duetotheirhighluminosity,thesemayactuallybesuperpositions,groups,orverycompactclusters,andnotindividualstars.

BecauseitappearslikelythatanyindividualstarsintheWFPC2imagesareBratherthanOstars,whichhavesignificantlylongerlifetimesandcouldeasilyhaveformedinclustersthathavesincedissolved,thedatadonotre-quireon-goingstarformationinthefield,assuggestedforNGC1705byTosietal.(2001)andAnnibalietal.(2003).InNGC1705,theseauthorsfound,viacomparisonofthedatawithsyntheticcolor-magnitudediagramtechniques,thattoaccountfortheblueststarsintheobservedCMD,requiredaburstofstarformation∼3Myrago.Ifthissce-narioisaccurate,itimpliesthatindividualmassivestarsareforminginthefieldregionsofNGC1705,andnotinstellarclusters.Thisconclusiondiffersfromours,sincewefindnoevidenceforveryyoungOstarsforminginthefield,anditispossiblethatthedispersedBstarpopulationorig-inallyformedinclustersmorethan10Myrago.Canthesedifferentconclusionsbereconciled?Onepossibility,isthat

anumberoftheunresolved,blueobjectsinNGC1705areactuallyyoung,lowmassstarclusters.InNGC4214,NGC4449,andNGC5253wefindevidenceforresolved,andhencelikelystarclusters,withbluecolorsdowntofaintmagnitudes.NGC1705isevenfurtherawaythanthesethreegalaxies,withadistancemodulus(m−M)0.26,makingitmoredifficulttosortoutcompact0of28.54±clustersfromindividualstarsbasedonsizemeasurements.HigherangularresolutionstudiesofNGC1705couldsettlethisissue.

5.4.SpatialProfileAnalysisandImplicationsforthe

FieldStellarPopulationInthissection,weuseourcrudefitstolowlevelpeaksinthespatialcuttogleanadditionalinformationconcern-ingthenatureofthediffuselight.Becausethecontribu-tiontothefieldissubjecttobiaseswithgalaxydistance,whererelativelyhighermassclustersmaybe“hiding”inthefieldofmoredistantgalaxies,weagainfocusontheclosestgalaxiesinoursample:NGC4214,NGC4449,andNGC5253alllocatedwithin4Mpc.Forlocalpeakswithinthebackgroundwhichcanbereasonablywellisolatedanddon’tshowobvioussignsofbeingblends,wedeterminedwhethertheywereresolvedorunresolved(precisesizees-timatesattheselowS/Nvalueswouldhavelargeuncer-tainties).Thesethreegalaxiesshowfractionsofresolvedlowlevelpeaksinthefield(typicallywefound∼13–17suchpeakspergalaxy)from∼30%to60%.BasedonourmeasurementofthespatialprofileofthestarGD71,unresolvedobjectshaveaFWHM∼0.08′′.IntheSTISspatialcuts,weconsiderapeak′′toberesolvedifithasaFWHMmeasurementof0.09orgreater.AtthedistancesofNGC4214,NGC4449,andNGC5253,thismeansthatcompactclusterswithFWHMmeasurementssmallerthan∼0.2pcwouldbeconsideredunresolved.Notethatwhencomparedwiththebrighterpeakswhichwehavedefinedasclusters,asmallerrelativefractionofthefaintpeaksinthefieldareresolvedwithinagivengalaxy.

Basedonthefieldspectralsignature,weknowthatthesearenotindividualOstars,althoughtheyarepreciselyinthefluxrangewherewewouldexpecttoseeindividualOstarsincludedinourdefinitionofthefield.CouldwebeseeingthecontinuafromadispersedBstarpopula-tion?TocheckiftheobservationsaredeepenoughtodetectthecontinuafromindividualB-stars,wefirstes-timatedtheapproximatedetectionlimitforcontinuainNGC4214fromtheSTISspectra(few×10−16ergs−1at1500˚16A),NGC4449(few×10−16ergs−1),andNGC5253(10−ergs−1)inourfieldregions.Wethenestimatedthe(unreddened)fluxexpectedforaB0supergiantat1500˚A,assumingatemperatureof30,000K,andamassof17.5M⊙fromKurucz(1993)modelatmospheres.WefindthatinthemostoptimisticscenariowhereasingleB0supergianthasnoreddening,thefluxwouldbejustaboveourdetectionlimit.However,thisscenarioisnotverylikely,sincelowermassBstarsaremuchmorenu-merousthanB0stars,andbecauseitisunlikelythatsuchstarshavenoreddening,asdemonstratedforexample,byacomparisonofspectraltypeandobservedcolorforBstarsintheHumphreys(1978)catalog.

Therefore,weconcludethatwhilesomeoftheweakerunresolvedpeaksinourfieldspectracouldbethecontinua

fromindividualearlyBsupergiants,itisunlikelythatalloftheunresolvedpeakscomefromindividualBstars.ThisdoesnothoweverprecludeapopulationofdispersedBstarsfromcontributingtothecontinuumlevelobservedinourUVspectroscopyofthefield.

BecauseourcalculationssuggestthatindividualBstarsarenotresponsibleforalloftheindividualfaintpeaksseeninthefieldportionsofourSTISspectra,itislikelythatatleastsomeoftheunresolvedpeakswhichweobserveinthefieldregionsoftheselocalstarburstsareeitherchancesuperpositionsofBstars,orcompactstarclusters.Thequestionthenbecomesaretheseyoung,lowmassclusters,oroldermoremassivebutfadedclusters.

WecanalsouseourphotometrytohelpplacelimitsonthepropertiesofstarclusterscontributingtoourSTISspectra,sinceitispossibletomatchindividualsourcesseeninarchivalUbandWFPC2imageswiththeobjectsinourslit.IfwerestricttheobjectsamplesintheWFPC2imagestothosewithin50pcoftheSTISslit,wesetapproximatedetectionlimitsMandNGCV=−5.8,−5.3,−5.9forNGC4214,NGC4449,5253respectively,fromavailableWFPC2imaging.AcomparisonoftheU−Vvs.V−IcolorsofresolvedobjectstothestellarevolutionarymodelsofBruzual&Charlot(2003)suggeststhatthesesourcesarealmostexclusivelyyoung,withlikelyagesofseveralMyr(althoughagesderivedfromintegratedpho-tometry,particularlyforsuchlowmassclusters,aresub-jecttorelativelylargeuncertainties).Byscalingthelu-minosityofa7Myrstarclusterof106M⊙(MV=−15.5accordingtoSTARBURST99models),wefindthatanyyoungclusterswhicharenotobservedinthearchivalWFPC2imageswouldhavemassesofseveralhundredso-larmassesandless(i.e.5.5.ScenariosforUnderstandingtheFieldStellar

PopulationOurmainresultisthatthediffuseUVlightinstarburstslacksthestrongO-starwindfeaturesobservedinneigh-boringUV-brightstarclusters.Inthissection,weexplorefourpossiblescenarioswhichcanexplainthisresult:

•Starformationoccursinbothclustersandthefield,butthemostmassivestarsinthefieldremaininthedeeplyenshroudedphaselonger,andthustodonotcontributetotheUVflux.

•Starformationoccursinboththefieldandclusters,butthereislittleornohighmassstarformationoccuringinthefield.ThishypothesisrequiresthatstarsformedinclustersandthefieldhavedifferentIMFs.

•Starformationoccursprimarilyinclusters,andwhatwearecallingthefieldiscomposedofyoung,butlowermassclusters(thelowmassendofthepow-11

erlawclustermassfunction),whichdonotformOstars.

•Starformationoccursprimarilyinclusters,andasclustersagetheydissolve,releasingtheirremainingstarsintothefield.

In§5.5.1–5.5.4below,wediscusseachscenariointurnincludinggeneralimplicationsforfieldformation.5.5.1.AreDeeplyEnshroudedOStarsHidinginthe

Field?Onescenariowhichcouldexplaintheobserveddiffer-enceinmassivestarsignaturesbetweenclustersandthefieldisthepossibilitythatstarformationoccursinbothenvironments,butthatfieldOstarsremainobscured(atUVwavelengths)ontimescalescomparabletotheirlife-times,andthuslongerthansimilarstarsinclusters.Therearetwomechanismswhichinfluencewhenamassivestarbecomesvisibleatoptical/UVwavelengths:(1)radiationandwindsfrommassivestarsblowouttheparentmolecu-larcloud,and(2)OBassociationstendtodriftawayfromtheirparentclouds,sincestarsandgasexperiencedifferentratesoffriction,andthushavedifferentvelocities.Inordertoreproduceboththewindfeaturesandcontinuumslopesobservedinclustersandfieldspectra,individualOstarsformedinthefieldcanneitherblowofftheirnatalmate-rialnordriftawayfromtheirparentcloudontimescalesof∼6–7Myr,otherwisetheirsignaturewouldbeobservedinourfieldspectra.ThisrestrictionwouldnotapplytoOstarsformedinclusters.Thetypicaltraveltime,al-thoughquiteuncertain,hasbeengivenas1–3Myr(deJong&Brink1986;Leisawitz&Hauser1988).

Theproblemwiththisscenarioisthatitrequiresfine-tuningofbothdriftandblowouttimescalesforfieldOstars,whichmustinturnbelongerthanthoseforsim-ilarstarsformedinclusters.Therefore,weconcludethatitisunlikelythatdeeplyembedded,individualOstarsareforminginthefieldregionsofthesestarbursts,andwehavejustmissedthembecauselittleUVfluxcanescape.

5.5.2.ConstraintsonFieldIMF

Ifstarformationisoccuringinbothfieldandclusters,thelackofmassivestarsobservedinthefieldcouldariseiftheIMFdiffersfromthatinclusters.Wefoundin§5.2.2thatinstantaneousburstSTARBURST99modelsolderthan6–8Myrproducereasonablygoodfitstothefieldspectra.However,theseareunlikelytoberealis-ticrepresentationsofspatiallyextendedfieldregions.Be-causethesefieldregionscoveraminimumlineardistanceof∼100pc,itisunlikelythatallthestarsformedatthesametime.Here,wecomparecontinuousstarformationmodelswiththeextractedfieldspectraanddiscussimpli-cations.Thesemodelstake∼10Myrtoequilibrate,afterwhichtheFUVspectrumchangesverylittleasafunctionofage.Therefore,wefixtheageat50Myr,andassumeastandardSalpeterIMF(slopeα=−2.35),andlowermasscutoffMtroscopyareratherlow=1M⊙(theresultsofourUVspec-insensitivetothelowermasscutofftotheIMF).Therearetwopossiblescenarioswhichcanex-plainthelackofmassivestarsobservedinfieldregions;bothassumeimplicitlythatstarformationisoccurringinsituinthefield.Inthefirstsetofmodels,wefixthe

12

ageofthecontinuousstarformationepisodeat50Myr,assumeaSalpeterIMF,anddeterminewhetherourfieldspectraareconsistentwithanuppermasscutoffwhichdif-fersfromthatforclusters.ThesecondsetofcontinuousstarformationmodelsfitsforthebestIMFslope,withanuppermasscutoffof100M⊙.

Forthefirstsetofmodelswherewefitfortheupperstel-larmasscutoff,wehaverecordedthebestfitincolumn2ofTable7.Qualitatively,thelackofmassivestarswhichisexpressedbyolderageswhencomparingwithinstanta-neousburstmodels,translatestouppermasscutoffslowerthan100M⊙.TheeffectofvaryingtheuppermasscutoffisshowninthesecondcolumnofplotsinFigure3.Clearly,astheuppermasscutoffisloweredfrom100M⊙,thesig-natureofmassivestars,particularlythePCygniprofilesforNVλ1240,SiIVλ1400,andCIVλ1550,disappears.Inordertoreproducetheobservedfieldspectra,theupperstellarmasscutoffinthesemodelshastobeloweredfromthe100M⊙usedintheinstantaneousburstmodels,andwhichprovidesagoodfitfortheclusters.Forthefieldspectrainmosttargetgalaxies,particularlyinthenearestgalaxiesandthosedistantoneswhichalsodonotshowthesignatureofmassivestarwindlines,thepreferreduppermasscutoffis30–50M⊙.

AsecondpossibilityisthattheIMFofstarsformedinthefieldissteeperthanthoseforminginclusters.Forexample,Masseyetal.(1995)findfieldstarsasmassiveasthoseformedinclustersandassociationsintheMag-ellanicClouds,evenafterensuringthatrunawaystarsareexcluded.Wetestedthispossibilitybycomparingacon-tinuousSTARBURST99modelfixedatanageof50Myr,withloweranduppermasscutoffsof1M⊙and100M⊙respectively,andallowedtheslopeoftheIMF,α,tovarybetweenanormalSalpetervalueof−2.35andthe−5.0foundbyMasseyetal.(1995)forthefieldinportionsoftheMagellanicClouds.Themostimportantinfluenceofthemassivestarsisseeninthewindlines,andsoweonlyweightedNVλ1240,SiIVλ1400,andCIVλ1550inourfits.InthethirdcolumnofplotsinFigure3noteinpar-ticulartherapidlydecreasingstrengthintheNVλ1240line.Wefindingeneralthatthepreferredvalueofαisbe-tween−3.0and−3.5.ThisissteeperthanSalpeter,butnotassteepasfoundfortheMagellanicClouds.Com-parisonofourextractedfieldregionswithcontinuousstarformationmodelsruleoutanIMFslopeassteepas−4.0forourgalaxies.Duetothepossibilitythatourextractedfieldregionsincludestarclusters,andhencesomeaddi-tionalmassivestarswhichwouldresultinaflatterslope,ourvaluesofαrepresentafirmlowerlimittothefieldIMFslope.Therefore,ifstarformationisoccuringinsituinthefield,andnotasaresultofdissolvingoragingstarclusters,thefieldismuchlesslikelytoproducemassivestarsthantheclusterenvironment.

5.5.3.ConstraintsontheContributionofaYoung

ClusterPopulationtotheFieldTheultravioletemissionfromthefieldregionssurround-ingstarclustersinourtargetstarbursts,inallcaseswiththeexceptionofHe2-10,lacksthestrongO-starwindlinesofNV,SiIV,andCIVthataresignaturesofthemostmassivestars.Thislackofhighmassstarsisnotduetoun-dersamplingfieldregionsinnearbystarbursts,asthefieldregionscontainaconsiderableamountoflight.Ifwereject

thattheIMFslopeandupperstellarmasscutoffoffieldregionsdiffersfromthatfoundinclusters,therearetwore-mainingpossibilitieswhichcanexplainboththeobservedspectralsignatureoftheUVfieldandthestrengthofthefaintpeaksinthefieldregions.Onepossibilityisthatthefieldiscomposedofclusterswhicharecoevalwiththoseobservedinourslit,buthavelowermasses.Thesecondisthatthefieldismadeupofolder/dissolvingstarclus-ters.Thedifferenceinthesetwoscenariosisprimaryoneofage.Althoughgalaxiesalmostcertainlyformclusterswitharangeinbothageandmass,forsimplicity,weas-sumeherethatthepresumedpopulationformedcoevallywiththeluminousclusters.Theseclusterswouldrepre-sentthelowerextensionoftheobservedpowerlawclusterluminosityfunction(seee.g.,Whitmoreetal.2003andreferencestherein).

WedeterminedintheprevioussectionthatclusterswithagesofseveralMyrandmassesofseveralhundredsolarmasseswouldnothavesufficientS/Ntobeclassifiedasclustersinourspectra,eveningalaxiescloserthan4Mpc.Furthermore,despitetheiryouth,itisreasonabletoex-pectthatsuchlowmassclustersmaybelackinginthemostmassiveOstars,yetstillbeabletoformBstars.Therearetwocurrentargumentsregardinghowtheup-permassportionofthestellarIMFispopulatedinlowermassclusters.Thefirstsuggeststhatthedistributionofstellarmassesisarandomsamplingoftheinitialstellarmassfunction,whichnaturallywouldresultintheforma-tionofveryfewmassiveOstarsinlowermassclusters.Forexample,arecentstudybyOey,King,&Parker(2004)ofthenumberofOBstarsperclusterorassociation(N∗)intheSmallMagellanicCloud,concludesthatthedistribu-tionofN∗isconsistentwiththesebeingthemostmassivestarsingroupsoflowermassstars.Thesecondargument(e.g.,Weidner&Kroupa2004)suggeststhatthereisafundamentalupperstellarmasslimitwhichdependsonthetotalmassofacluster.FromtheirFigure4,aclusteratthedetectionlimitofourstudywouldhaveanupperstellarmasslimitof∼10M⊙.Weperformedasim-pleexperimenttoinvestigatewhetherstarswithmasses>∼20M⊙(∼Ostars)arelikelytoforminclusterswithmassesofafew100M⊙.Werandomlydrewstarswithmassesbetween0.1and100M⊙,fromadistributionhav-ingaSalpeterslope(−2.35).Outof1000suchsimulatedclusters,roughly200–300hadatleastonestarmoremas-sivethan20M⊙.Therefore,ifyoung,lowermassclustersdominatethediffuseUVlight,ourlimitsimplythattheremustbeaslidingupperstellarmasslimit,whichisrelatedtothetotalmassofthecluster,assuggestedbyWeidner&Kroupa(2004).

5.5.4.ConstraintsontheTimescaleofDissolving

ClustersContributiontotheFieldBecausethefieldregionsofstarburstscontainlessmas-sivestarsthantheclusters,afourthpossibilitythatthemaindifferencebetweentheclusterandfieldstellarpop-ulationsistrulyoneofage.Thefieldcouldbecomposedofstarswhichoriginallyformedinclusters,butwhichdis-solvedandreleasedtheirremainingstarstothefield.Ifthefieldistheproductofdissolvingstarclusters,thanwecanplaceconstraintsonthetimescalesthatclustersinthesestarburstsmustdisintegrate.BasedontheyoungestanddominantagesofthefieldcompiledinTable4when

13

comparedwiththoseforstarclusters,wesuggestthatclus-terswhichcontributetothefieldneedtobedestroyedonveryrapidtimescales,oforder7–10Myr.

Theevolutionofclustersystemsingeneralincludesanumberofdisruptiveprocesses,suchasmasslossfromstellarevolution,andstellarevaporationduetoexter-nalgravitationalshocksandinternaltwo-bodyrelaxation(e.g.,Fall&Zhang2001).However,thesemechanismsoc-8

curoverrelativelylongtimescales(>∼10yrs)whencom-paredwiththe7–10Myrestimatedabove.ArecentstudyoftheagedistributionofstarclustersintheAntennaegalaxiessuggestsaveryrapiddecline.Fall(2004)andFall,Chandar,&Whitmore(2004)findthatthenumberofclustersasafunctionofagefallsbyafactor∼10bythetimetheclusterpopulationhasreachedanageof10Myr.Thisrapiddeclineisseenfordifferentmassrangesabove3×104M⊙.Numbercountsofembeddedclustersinthesolarneighborhoodwithmasseslowerbyfactors10–102alsoshowasimilarsteepdecline(Lada&Lada2003).Falletal.(2004)suggestthatthisshortdisruptiontimescaleindicatesthatthemajorityof(butnotall)starclustersintheAntennaeendupgravitationallyunbound,evenifthecloudfromwhichtheyinitiallyformedwasinitiallybound.Theionizingradiation,stellarwinds,andsuper-novaeexplosionsfrommassivestarscouldeasilyremoveasignificantfractionoftheISMfromaprotocluster,leav-ingthestarswithinitgravitationallyunboundandfreelyexpanding.Ifthisisthecase,suchclusterswouldbecomeverydifficulttodetectafter∼10Myr.Theveryshorttimescalesforclusterdissolutioninferredfromourdatainlocalstarburstgalaxies,ifdissolvingclustersarere-sponsibleforthediffuseUVfieldemission,areconsistentwiththetimescalesofclusterdisruptionpredictedbythefreeexpansionmodel.TheadvantageofusingUVspec-troscopy,aswehavedonehere,istheabilitytotrackthepresenceofthemostmassivestars,anddirectlytranslatetheseintoagedifferencesbetweenclustersandthefield.

5.6.HighS/NFieldTemplate

Thedifferencesobservedinthefieldandclusterspectraofourgalaxysamplehavepotentiallyimportantimplica-tionsfortherest-UVobservationsofgalaxiesathighred-shift.Becauseoftheirsmallangularextent,entiregalaxiesareobservedathighredshift,whilethebestlocalcounter-partsarestudiedinamorepiecemealway.BecausethediffuseUVlightfromstarburststypicallydominatestheoutputfromstellarclusters,itisveryimportanttoin-cludethisasaningredientinspectralsynthesisofgalaxiesathighredshift(althoughSteideletal.1996showthatacomparisonofz∼3LymanBreakgalaxyspectrawiththoseofindividuallocalclustersalsogivereasonablefits).Wehavecombinedtheextractedfieldspectraforfivemetal-poorgalaxies(Mkn33,NGC4214,NGC4449,NGC4670,andNGC5253)whichdonotshowthesig-natureofmassivestars,inordertomakeahighS/Ntem-plateofalowmetallicity“field”spectrum9(Figure6).Typicalabundancesforthegalaxiesare∼1/3–1/5solar,whichisagoodmatchtoabundancesmeasuredforhighredshiftgalaxies(Pettinietal.2000).Thishasacharac-teristicspectrumwhichis“older”thanindividualclusters(i.e.lackingthesignatureofmassivestars),andiswell

9The

representedbycontinuousstarformationmodels.

6.SUMMARYANDCONCLUSIONS

WehaveusedSTISlong-slitFUVspectraoftwelvelo-calstarburstgalaxiestostudythestellarcontentofthediffuse,UVluminousfieldregionsfoundbetweenpromi-nentstarclusters.TheextractedspectraarecomparedwithSTARBURST99stellarevolutionarysynthesismod-els.He2-10isuniquetoourstudy,inthatitcontainsthesignatureofmassiveOstarsinthefieldregions.Thecompositefieldspectrumisverysimilartothatforfourco-evalclustersinourslit.Weestimatethat40%ofthelightinthefarUVcomesfromobservedcompactstarclusters,providingafirmlowerlimittotheamountofUVlightoriginatinginclustersinthisstarburst.

WiththeexceptionofHe2-10,theclustersandfieldregionsintheother11targetgalaxiesexhibitpronounceddifferences.MostoftheUV-brightclustersarequiteyoung(<∼6Myr),andshowthestrongPCygniprofilesfoundinOstars.Theneighboringfieldregionshowever,clearlylackthesewindfeatures.Inparticular,thenearestgalax-ies(NGC4214,NGC4449,andNGC5253),aswellasanumberofmoredistantones,haveB-stardominatedfieldspectra.

WeincludeananalysisofUVIWFPC2imagingforthesethreeclosestgalaxies,inordertobetterunderstandthestellarpopulationswhichcontributetothefield.Pho-tometryofobservedsourcesinallthreegalaxiesrevealspopulationsofblueresolvedandunresolvedsources.Thecolorsandluminositiesofresolvedobjectsareindistin-guishablefromthoseofunresolvedsources.Thissuggeststhepresenceoflowmass,resolvedstarclusters,aswellasadispersedpopulationofbluestars.BecauseweseenoevidenceforthepresenceofOstarsinthefieldregionsofthesegalaxiesbasedonour(limitedcoverage)STISspec-troscopy,wesuggestthattheseareadispersedpopulationofBstars.

Thespatialprofilesalongtheslitshowthatthefieldre-gionsarenotsmooth,butrathercontainnumerousfaintpeaksandvalleys.AnanalysisofthefaintpeaksinthefieldregionsofourSTISspectrasuggeststhatthesearisefromdiscretestellarpopulations.Roughly30–60%ofthesepeaksareresolved.Ourcalculationsshowhowever,thattheSTISspectraarejustsufficienttodetectthecontinuafromunreddened,individualearlyBsupergiantsinthefield.Therefore,whilethepopulationofdispersedBstarsdiscoveredinthearchivalWFPC2imagesprobablydocon-tributetothefieldspectra,theyareprobablynotresponsi-bleforallofthefaintpeaksweobserve.Weconcludethatasignificantfractionofthesefaintpeaksarelikelysmallgroupsorclustersofstars,regardlessofwhethertheyareresolvedornot.

Weexplorefourpossiblescenariostoexplainourobser-vationthatthefieldcontainslowermassstarsthanneigh-boringclusters.

(1)Ifstarformationoccursinsituinbothclustersandthefield,andOstarsformedinthefieldstayintheen-shroudedphaselongerthantheircounterpartsinclusters,thenthesestarswouldnotcontributemuchtothefieldUVflux.Thisscenariowouldrequirea“fine-tuning”ofbothseculardriftvelocitiesandblow-outtimescalesfor

templatefieldspectraareavailablefromtheSTARBURST99website:http://www.tsci.edu/science/starburst

14

fieldOstars.Thereforewebelievethatitisunlikelythatdeeplyembedded,individualOstarsareforminginthefieldregionsofstarbursts.

(2)Ifstarformationoccursinbothfieldandclusterenvironments,thefieldIMFmustdifferfromthatfoundinclusters.IfthefieldIMFhasanormalSalpeterslope,ourdataareconsistentwithanuppermasscutoffof30–50M⊙.Alternatively,thefieldIMFslope,α,issteeperthanSalpeter,withbestfitvaluesof−3.0to−3.5.

(3)Ifstarformationisoccuringprimarilyinclustersandassociations,thenthefieldcouldbecomposedofyoung,coevalbutlowermassclusters.Ourphotometryandspec-troscopybothimplylimitsofseveral100M⊙forgroupsorclustersofyoungstarswhichcouldbehidinginourfieldspectra.ThislimitisconsistentwithalackofOstarsonlyifthereisanupperstellarmasslimitwhichscaleswiththetotalclustermass.Soeffectively,thisissimilar

toscenario(2).

(4)Ifstarformationoccursprimarilyinclusters,buttheseclustersdissolvetocreatetheobservedfield,ouranalysissuggeststhatclustersmustdissolveonveryrapidtimescales,oforder7–10Myr.Thisisconsistentwitharecentlypresentedscenariowheremoststarclusters,al-mostindependentoftotalmass,freelyexpandandrapidlydisrupt.

Wethanktheanonymousreferee,whosesuggestionsimprovedthepresentationofthispaper.Wearegrate-fulforsupportfromNASAthroughgrantGO-09036.01-AfromtheSpaceTelescopeScienceInstitute,whichisoper-atedbytheAURA,Inc.,forNASAundercontractNAS5-26555.C.A.T.acknowledgessupportfromNASAgrantNAG58426andNSFgrantAST-0307386,andG.R.M.acknowledgessupportfromNASAgrantNAG5-13083.

REFERENCES

Annibali,F.,Greggio,L.,Tosi,M.,Aloisi,A.,&Leitherer,C.2003,AJ,126,2752

Barth,A.J.,Ho,L.C.,Filippenko,A.V.,&Sargent,W.L.1995,AJ,110,1009

Bertin,E.,&Arnouts,S.1996,A&AS,117,393Bianchi,L.etal.2005,ApJ,619,L71

Biretta,J.A.,etal.2000,WFPC2InstrumentHandbook,version5.0,STScI,Baltimore

Boeker,T.,vanderMarel,R.P.,Mazzuca,L.,Rix,H-W.,Rudnick,G.,Ho,L.C.,&Shields,J.C.2001,aj,121,1473Bruzual,G.,&Charlot,S.2003,MNRAS,344,1000

Calzetti,D.,Meurer,G.R.,Bohlin,R.C.,Garnett,D.R.,Kinney,A.L.,Leitherer,C.,&Storchi-Bergmann,T.1997,AJ,114,1834Chandar,R.,Leitherer,C.,Tremonti,C.A.,&Calzetti,D.2003,ApJ,586,939

Chandar,R.,Leitherer,C.,&Tremonti,C.A.2004,ApJ,604,153Cheng,K.-P.,etal.1992,ApJ,L29Davidge,T.J.19,PASP,101,494

deJong,T.,&Brink,K.1986,inStarFormationinGalaxies,ed.C.J.LonsdalePersson(NASA-CP2466),323

deMello,D.F.,Leitherer,C.,&Heckman,T.M.2000,ApJ,530,251

Dolphin,A.2000,PASP,112,1397

Guseva,N.,Izotov,Y.I.,&Thuan,T.X.2000,ApJ,531,776

Fagotto,F.,Bressan,A.,Bertelli,G.,&Chiosi,C.1994a,A&AS,104,365

Fagotto,F.,Bressan,A.,Bertelli,G.,&Chiosi,C.1994a,A&AS,105,29

Fall,S.M.,2004,inFormationandEvolutionofMassiveYoungStarClusters,ed.H.J.G.L.M.Lamers,A.Nota,&L.J.Smith(SanFrancisco:ASP),inpress(astro-ph/04050)

Fall,S.M.,Chandar,R.,&Whitmore,B.C.2004,submittedtoApJLetters

Fitzpatrick,E.L.1999,PASP,111,63

Greggio,L.,Tosi,M.,Clampin,M.,deMarchi,G.,Leitherer,C.,Nota,A.,&Sirianni,M.1998,ApJ,504,725

Haas,M.,Lemke,D.,Stickel,M.,Hippelein,H.,Kunkel,M.,Herbstmeier,U.,&Mattila,K.1998,A&A,338,33

Harris,J.,Calzetti,D.,Gallagher,J.S.III,Conselice,C.J.,&Smith,D.A.2001,AJ,122,3046

Heckman,T.M.,Robert,C.,Leitherer,C.,Garnett,D.R.,vanderRydt,R.1998,ApJ,503,6

Hippelein,H.,Haas,M.,Tuffs,R.J.,Lemke,D.,Stickel,M.,Klaas,U.,&Volk,H.J.2003,A&A407,137Holtzman,J.A.,Burrows,C.J.,Casertano,S.,Hester,J.J.,Trauger,J.T.,Watson,A.M.,&Worthey,G.1995,PASP,107,106Humphreys,R.M.1978,ApJS,38,309

Hunter,D.A.1999,inIAUSymp.193,“Wolf-RayetPhenomenainMassiveStarsandStarburstGalaxies”,eds.K.A.vanderHucht,G.G.Koenigsberger,&P.R.J.Eenens(SanFrancisco:ASP),418

Izotov,Y.I.&Thuan,T.X.1999,ApJ,511,639

Kobulnicky,H.A.,Kennicutt,R.C.,Jr.,&Pizagno,J.L.1999,ApJ,514,544

Kurucz,R.L.1993,CD-ROM13,ATLAS9StellarAtmosphereProgramsand2km/sGrid(Cambridge:SmithsonianAstrophys.Obs.)

Lada,C.J.,&Lada,E.A.2003,ARA&A,41,57

Lamers,H.J.G.L.M.,Panagia,N.,Scuderi,S.,Romaniello,M.,Spaans,M.,deWit,W.J,&Kirshner,R.2002,ApJ,566,818Larsen,S.S.1999,A&AS,139,393

Larsen,S.S.&Brodie,J.P.2000,AJ,120,2938

Leitherer,C.1998in“TheStellarInitialMassFunction”,eds.G.Gilmore&D.Howell.ASPConferenceSeriesv.142,1998,p61

Leisawitz,D.,&Hauser,M.G.1988,ApJ,332,954Leitherer,C.etal.1999,ApJS,123,3

Maiz-Apellaniz,J.,Walborn,N.R.,Galue,H.A.,&Wei,L.H.2004,ApJS,151,103

Maoz,D.,Barth,A.J.,Sternberg,A.,Filippenko,A.V.,Ho,L.C.,Macchetto,F.D.,Rix,H.-W.,&Schneider,D.P.1996,AJ,111,2248

Massey,P.,Lang,C.C.,Degioia-Eastwood,K.,&Garmany,C.D.1995,ApJ,438,188

Massey,P.,&Olsen,K.A.G.2003,AJ,126,2867

Meurer,G.R.,Heckman,T.M.,Leitherer,C.,Kinney,A.,Robert,C.,&Garnett,D.R.1995,AJ,110,2665

Meynet,G.,Maeder,A.,Schaller,G.,Schaerer,D.,&Charbonnel,C.1994,A&AS,103,97

Misiriotis,A.,Popescu,C.C.,Tuffs,R.J.,&Kylafis,N.D.2001,A&A,372,775

Oey,M.S.,King,N.L.,&Parker,J.W.2004,AJ,127,1632

Pastoriza,M.G.,Dottori,H.A.,Terlevich,E.,Terlevich,R.,&Diaz,A.I.1993,MNRAS,260,177

Pettini,M.,Steidel,C.C.,Adelberger,K.L.,Dickinson,M.,&Giavalisco,M.2000,ApJ,528,96

Popescu,C.C.,Misiriotis,A.,Kylafis,N.D.,Tuffs,R.J.,&Fischera,J.2000,A&A,362,138

Popescu,C.C.etal.2005,ApJ,619,L69Salpeter,E.E.1955,ApJ,121,161

Schlegel,D.J.,Finkbeiner,D.P.,&Davis,M.1998,ApJ,500,525Steidel,C.C.,Giavalisco,M.,Pettini,M.,Dickinson,M.,&Adelberger,K.L.1996,ApJ,462,L17Steson,P.B.1987,PASP,99,191

Thilker,D.A.etal.2005a,ApJ,619,L79Thilker,D.A.etal.2005b,ApJ,619,L67

Tosi,M.,Sabbi,E.,Bellazzini,M.,Aloisi,A.,Greggio,L.,Leitherer,C.,&Montegriffo,P.2001,AJ,122,1271

Tremonti,C.A.,Calzetti,D.,Leitherer,C.,&Heckman,T.M.2001,ApJ,555,322

vandenBergh,S.2004,AJ,128,1880

Weidner,C.,Kroupa,P.2004,MNRAS,348,187

15

Table1

SampleGalaxyProperties

Galaxy

AdoptedDistance

(Mpc)

AreaProjectedinSlita

(pc)

Reference

References.—(1)Kobulnicky,Kennicutt,&Pizagno1999(2)Davidge19(3)Guseva,Izotov,&Thuan2000(4)Heckmanetal.1998(5)Pastorizaetal.1993(6)Boekeretal.2001(7)Izotov&Thuan1999

BasedonDistancegiveninColumn2,assuming25′′coverageofthegalaxyandgiventheslitwidthoftheobservations

a

Table2

FractionofFar-UVLightFromClustersandtheField

Galaxy

Clusters

Field

Note.—Valuesdeterminedbysummingupthelightfromspatialplotsforallclustersandcomparingwiththetotallightintheslit.Thespatialplotsaresummedover700pixels,covering∼1250–1700˚A.BecausetheslitlocationswerechosentomaximizethenumberofUV-luminousclustersalignedintheslit,thesefractoinsrepresentlowerlimitstothetotalfractionoffieldlightineachgalaxy.

16

Table3

ArchivalWFPC2Data

Galaxy

EB−Vaforeground

FiltersExposureTime[sec]

F336W(U)F555W(V)F814W(I)

Foreground,MilkyWayextinctionfromtheSchlegeletal.(1998)

maps

a

Table4

ComparisonofMeanAges(Myr)ofDominantClustervs.FieldStellarPopulations

Galaxy

BrightClusters

FaintClusters

Field

Note.—TheagesinMyrandassociateduncertaintieshavebeenderivedbycomparingtheobservationswithinstantaneousSTARBURST99models,assumingaSalpeterIMFandupperandlowermasscutoffsof100M⊙and1M⊙respectively.Theun-certaintiesweredeterminedbyusingthebootstraptechniqueasdescribedinTremontietal.(2001)

17

Table5

ComparisonofContinuumSlopesinClustervs.FieldStellarPopulations

Galaxy

FUVslope(β)a

BrightClustersFaintClusters

Field

ThefarUVslope,β,measuredaftercorrectingforforeground

extinction.Typicaluncertaintiesonβmeasurementsare±0.1.

a

Table6

MeanStarFormationRatesDerivedforSTISFieldRegions

Galaxy

pixelsa

EB−Vb

L1500c

SFRd

#Ostarse

Totalnumberofpixelssummedupinthespatialdirectionforeachfieldregion.

Reddeningderivedusingthestarburstobscurationcurvefromthedifferenceinthemodelslope(−2.5),andtheobservedslopeofthefieldaftercorrectionforforegroundreddening.

−1

Extinctioncorrectedluminosityat1500˚Ainergss−1˚Amea-suredfromtheSTISspectra.WeusetheEB−Vvaluesquotedincolumn3.cb

a

StarformationrateinM⊙yr−1kpc−2.WehaveassumedastandardSalpeterIMF(α=−2.35),andanuppermasscutofffortheIMFof100M⊙.Theageforthecontinuousstarformationmodelhasbeenfixedat50Myr.

d

NumberofOstarspredictedbySTARBURST99continuousstarformationmodels(assumingastandardSalpeterIMFandMup=100M⊙)toresideinthefieldregiongiventhemeanSFRgivenincolumn5.

e

18

Table7

BestFittingFieldModelsGalaxy

Mupa

αb

Bestfitwhenfieldspectraarecom-paredwithcontinuousformationSTAR-BURST99modelswhichhaveSalpeterIMF,Mlow=1M⊙,andavariableuppermasscutoff.

BestfittotheIMFslope,α,incontin-uousformationSTARBURST99model.

b

a

19

3•10−11

225

He 2−10

Parsecs450675

9001125

1.5•10−11

0.51.0

Kpc

1.52.0

Mkn33

2.5

Summed Flux1•10−11

Summed Flux2•10−111.0•10−11

5.0•10−12

00

200400600800

Pixels along spatial direction

Kpc

1.42.84.25.6

N1741

0

10007.0

0

200400600800

Pixels along spatial direction

Kpc

0.280.560.841.12

N3125

10001.40

3.0•10−112.5•10−112.0•10−11Summed Flux1•10−118•10−12Summed Flux6•10−124•10−122•10−12

0

1.5•10−111.0•10−115.0•10−12

0

−5.0•10−12

0

200400600800Pixels along spatial direction

Parsecs

3256509751300

N3310

10001625

0

6•10−122.0•10−111.5•10−11Summed Flux200400600800

Pixels along spatial direction

Parsecs

70140210280

N4214

1000350

Summed Flux4•10−12

1.0•10−11

2•10−12

5.0•10−12

00

200400600800

Pixels along spatial direction

1000

00

200400600800Pixels along spatial direction

1000

A)asafunctionofpositionalongtheslitforeachtargetgalaxyinthisstudy.Fig.1.—Theintegratedflux(from700pixels,∼1250–1700˚

Theportionsofthespectrawhichwereusedtocreatethecompositefieldspectraareplottedinblack.TheSTISMAMAdetectorshaveaplatescaleof0.024′′pix−1.

20

5•10−12 95

190Parsecs285

380

475

N4449

4•10−12xulF3•10−12 demmu2•10−12S1•10−12

0

02004006008001000Pixels along spatial direction

5•10−12

80160Parsecs

240320

400

N5253

4•10−12xulF3•10−12 demmu2•10−12S1•10−12

0

02004006008001000Pixels along spatial direction

1.5•10−11

0.501.00Kpc

1.502.00

2.50

N7552

x1.0•10−11

ulF demmuS5.0•10−12

00

2004006008001000

Pixels along spatial direction

Fig.1.—Continued

5•10−12 0.39

0.78Kpc

1.17

1.56

1.95

N4670

4•10−12xulF3•10−12 demmu2•10−12S1•10−12

0

0200400600800

1000Pixels along spatial direction

2.0•10−11

1.152.30Kpc

3.454.60

5.75

N5996

1.5•10−111.0•10−11

5.0•10−12

0

02004006008001000Pixels along spatial direction

2.0•10−11

0.901.80Kpc

2.703.60

4.50

Tol1924−416

1.5•10−11

1.0•10−11

5.0•10−12

00

2004006008001000

Pixels along spatial direction

Summed FluxSummed Flux21

4•10−12

N4214 Field

3•10−12Summed Flux2•10−12

1•10−12

0150

200250300Pixels along spatial direction

350

Fig.2.—AnenlargementofthefluxalongthespatialdirectionforaportionofNGC4214(ingrey)containingsomefieldregions(inblack).Thisfigureshowshowthefieldlightisnotsmooth,butcontainsanumberoffaintpeaksandvalleys.

1.00.5 1.0 Rectified Flux0.5 1.00.5 1.00.5

Instantaneous

Continuous

Continuoust=5 Myr

Mup=100M .O

α=-2.35

t=6 Myr

Mup=50M .O

α=-3.0

t=7 Myr

Mup=30M .O

α=-3.5

t=8 Myr

130014001500Wavelength (A)

Mup=10M .O

130014001500Wavelength (A)

α=-4.0

130014001500Wavelength (A)

Fig.3.—ThefigurepresentsexamplespectrafromvariousSTARBURST99modelsconsideredinthiswork.ThestrengthoftheSiIVλ1400andCIVλ1550windfeatures,plusotherdiagnosticsprovideexcellentconstraintsonthemassivestarcontentinnearbygalaxies.ThefirstcolumnshowstheeffectofagingontheUVspectrumofaninstantaneousburststellarpopulation,withMup=100M⊙.ThesecondsetofpanelsshowsthevariationsinacontinuousstarformationepisodewhentheuppermasscutofffortheIMFisloweredfrom100M⊙to10M⊙.AndthethirdcolumnshowsUVspectraforcontinousstarformationmodelswithdifferentIMFslopes,α.Thedurationforthecontinuousstarformationshownincolumns2and3is50Myr.

22

Flux (10−16 erg s−1 cm−2 Å−1)

Composite He 2−10 Clusters

Flux (10−16 erg s−1 cm−2 Å−1) 4020 15105

Composite Mkn33 FieldComposite Mkn33 Clusters

755025 201510501200

1082

Composite He 2−10 Field

Flux (10−16 erg s−1 cm−2 Å−1) 1300

14001500Wavelength (Å)

16001700

1200

1300

14001500Wavelength (Å)

16001700

Composite NGC3125 Clusters

302010 1510501200

200150

NGC1741 Cluster 1

Flux (10−16 erg s−1cm−2Å−1) 2010 10

NGC1741 Faint Clusters

Composite NGC3125 Field

Flux (10−16 erg s−1 cm−2 Å−1) 5 1200

Composite NGC1741 Field

1300

14001500Wavelength (Å)

1600

1700

1300

14001500Wavelength (Å)

16001700

15

Composite NGC3310 Clusters

100

105 4020 1200

Composite NGC3310 Field

Flux (10−16 erg s−1cm−2Å−1)50 15105 302010

NGC4214 Cluster 1

NGC4214 Faint Clusters

1300

14001500Wavelength (Å)

16001700

1200

Composite NGC4214 Field

1300

14001500Wavelength (Å)

1600

1700

Fig.4.—Unweightedsumofstarclusterspectraandsummedfieldspectraextractedforourtargetgalaxies.

Composite NGC4449 Clusters

30 )1−Å 20 2−mc 1−s10 gre 61−15 0

1( xu10

lF5Composite NGC4449 Field

0 12001300

1400150016001700

Wavelength (Å)

20 )115

−Å 2−m10c 1−s 5gre 6 Composite NGC5253 Clusters

1− 0

1( 30

xulF2010

Composite NGC5253 Field 12001300

1400150016001700

Wavelength (Å)

Composite NGC7552 Clusters

15 )1−Å 10 2−mc 1−s5 gre 6 1− 0

Composite NGC7552 Field

1( 6

xulF42 1200

1300

140015001600

1700

Wavelength (Å)

Fig.4.—Continued

23

80 )160−Å 2−m40c 1−s 20gComposite NGC4670 Clusters

re 6 1− 0

1( 30

xulF2010

Composite NGC4670 Field1200

1300

1400150016001700

Wavelength (Å)

4030 2010NGC5996 Cluster 1

)1− Å 2

−m8c

1−s g6re 614−01( 2xulF NGC5996 Faint Clusters 8

6 4 2Composite NGC5996 Field 12001300

140015001600

1700

Wavelength (Å)

75 50)1−Å 2−mc25 1−s gre 6 Composite TOL1924−416 Clusters

1− 0

1( 25 xulF2015

Composite TOL1924−416 Field1200

1300

1400150016001700

Wavelength (Å)

24

-2N4214-2N4449-1-1U-V0resolvedunresolvedU-V0resolvedunresolved1-12-10 1-12-10 MV-8MV0V-I1-22N5253-8-6-4-1-6-4-10V-I12-1U-V0resolvedunresolved1-12-10 MV-8-6-4-10V-I12Fig.5.—Two−colorandcolor−magnitudediagramsforNGC4214,NGC4449,andNGC5253areshown,basedonarchivalWFPC2imaging.ThetoppanelsshowtheU−Vvs.V−Icolor-colordiagrams,correctedforforegroundextinctiononly.Resolved(redcircles)andunresolved(bluecrosses)sourcesareplottedseparately.TheevolutionofsimplestellarpopulationsfromtheBruzual&Charlot(2003)modelsareshownforthreedifferentmetallicities:solar(solidline),1solar(dashed).Thedirectionofthereddening50

678vectorisshownbythearrows,whichrepresentsEB−V=0.1.Agesof10,10,and10areshownasblackfilledcirclesalongthecluster

models,startingfromtheupperleft.Inthebottompanels,weshowtheVvs.V−Icolormagnitudediagrams.Overplottedare30M⊙,15M⊙,and9M⊙Padovastellarevolutiontracks(Fagottoetal.1994a,b),with1

25

Fig.6.—RectifiedspectrumoftheunweightedsumoffieldregionsforsixlowmetallicitygalaxieswhichhaveB-stardominatedfieldspectra(MKN33,NGC4214,NGC4449,NGC4670,NGC5253,andNGC1741).

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo0.cn 版权所有 湘ICP备2023017654号-2

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务