sector
MauricioBellini∗
DepartamentodeF´ısica,FacultaddeCienciasExactasyNaturales
UniversidadNacionaldeMardelPlata,
Funes3350,(7600)MardelPlata,BuenosAires,Argentina.
IntheframeworkofinflationarycosmologyIstudysomeaspectsofnonequilibriumthermody-namicsforthematterfieldfluctuations.ThethermodynamicanalysisisdevelopedfordeSitterandpower-lawexpansionsoftheuniverse.Inbothcases,Ifindthattheheatcapacityisnegativeleadingrespectively,toexponentialandsuperexponentialgrowthforthenumberofstatesintheinfraredsectorfordeSitterandpower-lawexpansionsoftheuniverse.Thespectrumforthematterfieldfluctuationscanbeunderstoodfromthebackgroundeffectivetemperaturewhenthehorizonentry.
Pacsnumber(s):98.80.Hw,05.70.Ln
Sinceinflationstretchesmicroscopicscalesintoastro-nomicalones,itsuggeststhatthedensityperturbationswhichprovidetheseedsforgalaxyformationmighthaveoriginatedasmicroscopicquantumfluctuations[1,2].Apromisingapproachtowardsabetterunderstandingofthesephenomenaistheparadigmofstochasticinfla-tion.ThemostwidelyacceptedapproachassumethattheinflationaryphaseisdrivingbyaquantumscalarfieldϕwithapotentialV(ϕ).Withinthisperspective,thestochasticinflationproposestodescribethedynam-icsofthisquantumfieldonthebasisofasplittingofϕinahomogeneousandaninhomogeneouscomponents.Usuallythehomogeneousoneisinterpretedasaclassi-calfieldthatarisesfromacoarse-grainedaverageoveravolumelargerthanthehorizonvolume,andplaystheroleofaglobalorderparameter[3].Allinformationonscalessmallerthanthisvolume,suchasthedensityfluctuations,iscontainedintheinhomogeneouscompo-nent.DuringinflationvacuumfluctuationsonscaleslessthantheHubbleradiusaremagnifiedintoclassicalper-turbationsinthescalarfieldsonscaleslargerthantheHubbleradius.Theprimordialperturbationsarisesolelyfromthezero-pointfluctuationsofthequantizedfields.Althoughtheregionwhichultimatelyexpandedtobe-cometheobserveduniversemayhavecontainedexcita-tionsabovethevacuum,theseexcitationswouldnothaveanysignificanteffectonthepresentstateoftheuniversebecauseasufficientlylargeamountoftheinflationwouldhaveredshiftedtheseexcitationstoimmeasurablylongwavelengths.Thezero-pointfluctuations,ontheotherhand,havearbitrarilysmallwavelengths,indeedtheyaremostsignificantatverysmalllengthscales.Thezero-pointfluctuationsareimperceptiblebecauseoftheirshortwavelengths,buttheprocessofinflationcanstrechthesewavelengthstomacroscopicandeventuallytoas-tronomicaldimensions.Hence,thedensityperturbationsshouldberesponsibleforthelargescalestructureforma-tionintheuniverse.
InthispaperIaminterestedinthestudyofthetermo-dynamicalpropertiesofmatterfieldfluctuationsintheinfrared(IR)sector.Somethermodynamicalresearchsweredevelopedrecentlyintheframeworkoftheden-sitytopologyofthespacetimefoam[4]andthequantumstructureofSchwarschildblackholes[5].Duringinflationthissectorvariesthenumberofdegreesoffreedom.Thisisanunstablesectorwhichdescribestheuniverseonascalemuchlargerthantheobservableuniverse.Anaturalconsequenceofthisapproachistheself-reproductionofuniversesandthereturntoaglobalstationarypicture.Forinflationthesimplestassumptionisthattherearetwoscales:along-time,long-scaleassociatedwiththevacuumenergydynamics,andtheshort-time,short-distancescaleassociatedwitharandomforcecomponent.TheHubbletime1/H,separatesthetworegimes.
ThedynamicsofascalarfieldminimallycoupledtoaclassicalgravitationaloneisdescribedbytheLagrangian
L(ϕ,ϕ1
,µ)=−
√
16π
+
a2
∇2φ+3Hcφ
˙+V′′(φc)φ=0,(2)
whereV′′(φc)≡
∂2V(ϕ)
a
istheHub-bleparameterandaisthescalefactoroftheuniverse.
Duringinflation,theuniverseisaccelerateda¨>0andtheinflationendswhena¨∼0.Theequation(2)describesthematterfieldfluctuations(uptononlineartermsinφ),onagloballyhomogeneousandisotropicbackgroundspace-timedescribedbyaFriedmann-Robertson-Walkermet-ric
ds2=−dt2+a2(t)dx2.
(3)
Theeq.(2)canbesimplifiedbymeansofthemapφ=
e−3/2Hcdtχ
χ¨−a−2k2
0(t)−k2χ=0,(4)where
k2
0(t)=a2
9
2
H
˙c−V′′[φc(t)]
(5)
isthetime-dependentwavenumberthatseparatesthe
infraredandtheultravioletsectors,whichdescribetworelevantsscalesduringinflation.Sincek
˙the
0(t)>0,duringinflationnewandnewmodesentersintheinfraredsectorsuchthatinthissectorthefrequencyωkholds
ω2
k(t)=−a−2k2
0
(t)−k2Asinpreviousworks[7,8]onecan<0.(6)writetheredefined
matterfieldfluctuationsintheinfraredsectorbymeansaFourierexpansionwhichselectsthelongwavelengths
modesχk=eik.x
ξk(t)(fork≪k0)
χcg=
1
canbeconsideredasclassicalwhenthemodesofthissectorholdsthecondition
timedependent
Im[ξk(t)]
e−βωk(t)
=
(2π)3
ωǫk0dωkρ(ωk)e−βωk,
(8)
ωk=0
whereβ−1playstheroleofthebackground“tempera-ture”andωkistherelevantfrequencygivenbyeq.(6).
Furthermore,Idenotethesquaredfrequencyoffwavenumberǫk0byω2ǫk=−a−2k2with2adimensionlessparametergivenby0(1−ǫ)thecut0.Here,ǫisk/k0theframeworkofstochasticinflationthebackground≪1.Inwellrepresentedbytheultravioletsector,whereω2
is
semiclassicallimitthefrequencyωthek>0.Inthekplaysroleoftheenergyforeachmodewithwavenumberk.Weareinterestedintheinfraredsector.Inthissectorthewavenumbersareverysmallwithrespecttok0(k≪k0),andthefrequencyωkisimaginarypure(ωk=±i|ωkAswewillseelater,theparameterβisalsoimaginary|).pureandthustheargumentoftheexponentialineq.(8)remainsreal.Thefunctionρ(ωk)givesthedensityofstateswithfrequencyωkontheinfraredsector
ρ(ω=1k)dωk2=k,(9)whered3k
dωk
dk
k2+a2ω2=0
k1/22π2
k2
0+a2(t)ω21/2
k
|ωk|a2(t).(11)
Thethermodynamicsforsystemswithexponentially
growthofdensityofstateswasfirstconsideredbyHage-dornintheframeworkofthehadronmassspectruminbootstrapmodels[12,13].Energyaddedtoasystemcangoeitherintoincreasingtheenergyofexistingstatesorintocreatingnewstates.Inthecaseofthematterfieldfluctuationsintheinfraredsectornewandnewstatesarecreatedfromtheultravioletsector.
The“temperature”andtheheatcapacityaregivenby
β=
∂ln[ρ]∂ω2k
−1
Theconditionthatthedensityof
.
(13)
k=ǫk0
statesrisessuperex-ponentiallyispreciselythatthesecondderivativeineq.
(13)bepositive,andCVthusbenegative.Systemswithnegativeheatcapacitiesarethermodynamicallyunsta-ble.Theyareplacedincontactwithaheatbathandwillexperiencerunawayheatingorcooling.Iftheden-sityofstatesgrowsexponentially,aninflowofenergyattheHagedorntemperaturegoesentirelyintoproduc-ingnewstates,leavingthetemperatureconstant.Ifthedensityofstatesgrowssuperexponentially,theprocessissimilar,buttheproductionofnewstatesissocopiousthataninflowofenergyactuallydrivesthetemperaturedown.Tosimplifythenotation,inthefollowingIwilldenoteωǫk0asω.Forinflationarymodelsoneobtainsintheinfraredsector
−µ4ω2µ2+µ4+2ω4
CV=
|ω|(µ2+ω2)
.(15)
Inthecasewearestudying,the“thermalbath”isde-scribedbytheultravioletsector,butitisnottrullyther-malized.Intheframeworkofsupercooledinflation,β−1itisnotatrullytemperature.Thus,itisimaginarypure.Furthermore,theparameterβdescribestheenvironmentoftheinfraredsector,herecharacterizedbytheultravi-oletsector.Thequantumnatureofthematterfieldfluc-tuationsintheultravioletsectorisanothermotivationfortheparameterβtobeimaginarypure.
Furthermore,theheatcapacitygivesinformationabouttheevolutionoftheinfraredsector,whichisanunstablesector.IfCV>0,thesystemdistributesitsenergyintheexistentstates.Theinversesituationde-scribesasystemwhichincrementsveryrapidlythenum-berofstates.
ThermodynamicsforadeSitterexpansion:AsafirsthexampleIwillconsiderascalefactora∼eH0t,whereH0istheHubbleparameter.ForadeSitterexpansionthisparameterisconstant.InadeSitterexpansionµ2=
ν2H02,whereν2=9H2.Thedensityofstatesisgiven
by
0
ρ(ωk)≃
1
β≃∓i
11−
ǫ2
≃∓
i
powerdensityperturbationsshouldbeafunctionofthebackgroundtemperature.Inotherwords,ifPφcg(t∗)=|δk|2isthepowerspectrumforthematterfieldfluc-ǫk0dk
tuations,suchthatφ2=cgIR0
2
(ǫ2νH(18)
0)4
(1−
ǫ2)
2
≃−2(ββ∗).
Notethattheheatcapacityisnegativebutconstant.Thismeansthat,asweputenergyintotheinfraredsec-tor,agreaterandgreaterproportionofitisemployedintheexponentialproductionofnewstatesratherthaninincreasingtheenergyofalreadyexistingstates.
Thermodynamicsforapower-lawexpansion:Nowweconsiderthecasewherethescalefactorevolvesasa∼tp.InthiscasetheHubbleparameterisHc=p/tandtheeffectivesquaredmassparameterbecomes[7]
µ2(t)=t−2
9
2p+2.(19)Thedensityofstatesρ(ωk)is
ρ(ωk)≃
|ωk|
9
3
p+2.InflationholdswhenK>
0,i.e.,forp>3.04.Hence,theinverseoftheeffectivetemperatureoftheinfraredsectoris[seeeq.(12)]
β≃∓i
t
it1−ǫ2
≃∓∗(Kǫ2)
4
(1−
ǫ2)
2≃−2(ββ)2
.
(22)
Theexpression(22)forCVbecomesmoreandmoreneg-ativewithtime,duetotheunstabilityoftheinfraredsectorduringinflation.Aswasdemonstratedinapre-viouswork[7],inapower-lawexpansionfortheuni-versetheinflatonpotentialsuppressesthedispersionofthequantumfluctuationsinapower-lawexpansionfortheuniverse.ThisresultcoincideswiththequantumfieldpredictionandcouldberesponsiblefortheveryrapidlydecreasingoftheheatcapacityCV2.
Generalcomments:If(ββ∗)−1/isthezeromodetem-perature(orbackgroundtemperature),thesquaredin-fraredmatterfieldfluctuationswhenthehorizonentrywillbe
φ2
ǫ6
cgIR≃
ββ∗ξ0
=0,sothattheamplitudeforprimordial
4
[1]A.D.Linde,ParticlePhysicsandInflationaryCosmol-ogy(Harwood,Chur,Switzerland,1990)andreferencestherein.
[2]A.A.Starobinsky,inCurrentTopicsinFieldTheory,
QuantumGravity,andStrings,ed.byH.J.deVegaandN.S´anchez,LectureNotesinPhysics226(Springer,NewYork,1986).
[3]A.S.GoncharovandA.D.Linde,Sov.J.Part.Nucl17369
(1986).
[4]S.Carlip,Phys.Rev.Lett.79,4071(1997).
[5]T.Padmanabhan,Phys.Rev.Lett.81,4297(1998).[6]S.Habib,Phys.Rev.D46,2408(1992).
[7]M.Bellini,H.Casini,R.Montemayor,P.Sisterna,Phys.
Rev.D54,7172(1996).
[8]M.Bellini,Phys.Rev.D61,107301(2000).
[9]M.Bellini,Class.QuantumGrav.16,2393(1999);M.
Bellini,Nucl.Phys.B563,245(1999).
[10]D.PolarskiandA.A.Starobinsky,Class.Quant.Grav.
13,377(1996).
[11]C.Kiefer,J.Lesgourdes,D.Polarski,andA.A.Starobin-sky,Class.Quant.Grav.15,L67(1998).
[12]R.Hagedorn,NuovoCimentoSuppl.3,147(1965).[13]R.Hagedorn,NuovoCimentoA56,1027(1968).
[14]P.HertelandW.Thirring,Ann.Phys.(N.Y.)63,520
(1971).
[15]D.Lynden-BellandR.M.Lynden-Bell,Mon.Not.R.
Astron.Soc.181,405(1977).
[16]P.T.LandsbergandR.P.Woodard,J.Stat.Phys.72,
361(1993).
5
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo0.cn 版权所有 湘ICP备2023017654号-2
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务