八年级数学期末质量检测答案
一、选择题(每小题3分 共36分)
1——5. B C C C B 6——10. C C B D A 11——12. D C 二、填空题(每小题4分 共20分)
13. x≤3且x≠-4 14.52cm 120cm2 15. 4 16.甲 17 1.5 三、解答题(共分) 18.(每题4分 共8分) (1)
(2)32
19.(8分)
解:∵AD⊥BC
∴∠ADB=∠ADC=90°…………………………(1分) 在Rt△ABD中 ∠ABD=30°
∴AD=
BD=
=
=
………… (5分)
AB=
×8=4…………………………(3分)
在Rt△ADC中 ∵∠CAD=45°
∴∠C=∠CAD=45°………………………… (6分) ∴DC=AD=4…………………………………… (7分) ∴BC=BD+DC=
…………………… (8分)
20.(10分)
解:(1)∵直线y=kx-6经过点A(4,0) ∴0=4k-6
∴k=
………………………………(2分)
(2)因为直线y-3x+3与x轴交于点B
∴-3x+3=0 得x=1则点B的坐标(1,0)……(4分) ∵两直线交于点C ∴
解得
…………(7分)
∴点C坐标(2,-3)………………………………(8分) ∴AB=4-1=3
∴S△ABC=
·AB·|-3|=
×3×3=
…… (10分)
21.(12分)(1)(人)因此该班的总人数…………(3分)
(2)捐款10元人数为50-(9+14+7+4)=16(人)
(补全条形图)…………………………………(7分) 捐款金额的众数是10元………………………(9分)
(3)
因此该班的平均每人捐款13.1元……………(12分)
22.(12分)(1)∵CE平分∠ACB
∴∠ACE=∠BCE ………………………………(1分) ∵CF平分∠ACD
∴∠ACF=∠DCF ………………………………(2分) ∵MN∥BC
∴∠OEC=∠BCE ∠OFC=∠DCF…………………(4分) ∴∠ACE=∠OEC ∠ACF=∠OFC ∴OE=OC OF=OC
∴OE=OF………………………………………… (6分) (2)由(1)得
∠ECF=∠ACE+∠ACF=
∠ACB +
∠ACD=
(∠ACB +∠ACD)
= ∴
×180°=90°……………………… (7分)
…………(8分)
又∵OE=OF O为EF中点
∴OC=
EF=6.5…………………………………(9分)
(3)O运动到AC中点时 四边形AECF为矩形…… (10分)
理由:∵O为EF中点,也是AC的中点 ∴AC与EF互相平分
∴四边形AECF为平行四边形……………………(11分) 又∵∠ECF=90°
∴四边形AECF为矩形 …………………………(12分) 23.(共14分)
解:(1)∵装运食品的车辆数为x,装运药品的车辆数为y,
∴装运生活用品的车辆数为(20-x-y)………… (1分)
由题意,得:6x+5y+4(20-x-y)=100 整理,得:y=-2x+20
∴y与x的函数关系式为y=-2x+20 ………………(3分) (2)由(1)知,装运食品、药品、生活用品三种物资
的车辆为:x,20-2x,x
x5由题意,得 …………………………(4分)
20-2x4解得5≤x≤8 ……………………………………(5分)
因为x为整数,所以x的值为5、6、7 、8
∴安排方案有4种 ………………………………(6分) 方案1. 5辆装运食品,10辆装运药品,5辆装运生活食品 …………………………………(7分) 方案2. 6辆装运食品,8辆装运药品,6辆装运生活食品 …………………………………(8分) 方案3. 7辆装运食品,6辆装运药品,7辆装运生活食品 …………………………………(9分) 方案4. 8辆装运食品,4辆装运药品,8辆装运生活食品 …………………………………(10分)
(3)设总运费为W(元)则
W=120×6x+160×5(20-2x)+100×4x=-480x+16000
…………………………………(12分)
因为k=-480﹤0,所以W随x的增大而减小
∴当x取最大值时,W最少,即选择方案4………(13分) W=-480×8+16000=12160
∴最少总运费为12160元 ………………………(14分)