一、选择题(每小题5分,共60分)
1.已知a=2,集合A={x|x≤2},则下列表示正确的是( ).
A.a∈A B.a∈/ A C.{a}∈A D.a⊆A 2.集合S={a,b},含有元素a的S的子集共有( ).
A.1个 B.2个 C.3个 D.4个 3.已知集合M={x|x<3},N={x|log2x>1},则M∩N=( ).
A. B.{x|0<x<3} C.{x|1<x<3} D.{x|2<x<3}
4.函数y=4-x的定义域是( ).
A.[4,+∞) B.(4,+∞) C.-∞,4] D.(-∞,4) 5.国内快递1000g以内的包裹的邮资标准如下表:
运送距离x (km) 0<x≤500 500<x≤1000 1000<x≤1500 1500<x≤2000 … 邮资y (元) 5.00 6.00 7.00 8.00 …
如果某人在南京要快递800g的包裹到距南京1200km的某地,那么他应付的邮资是( ). A.5.00元 B.6.00元 C.7.00元 D.8.00元 6.幂函数y=x(是常数)的图象( ).
A.一定经过点(0,0) B.一定经过点(1,-1) C.一定经过点(-1,1)D.一定经过点(1,1) 7.0.44,1与40.4的大小关系是( ).
A.0.44<40.4<1 B.0.44<1<40.4 C.1<0.44<40.4 D.l<40.4<0.44 8.在同一坐标系中,函数y=2-x与y=log2x的图象是( ).
y y y y x x O x O O O A. B. C. D. 9.方程x3=x+1的根所在的区间是( ).
A.(0,1) B.(1,2) C.(2,3) D.(3,4) 10.下列函数中,在区间(0,+∞)上是减函数的是( ).
1
A.y=- B.y=x C.y=x2 D.y=1-x
x1
11.若函数f (x)=-x +a是奇函数,则实数a的值为 ( ).
3-1
11
A. B.- C.2 D.-2
22
12.设集合A={0,1},B={2,3},定义集合运算:A⊙B={z︳z= xy(x+y),x∈A, y∈B},则集合A⊙B中的所有元素之和为( ).
A.0 B.6 C.12 D.18
二、填空题(每小题5分,共30分) 13.集合S={1,2,3},集合T={2,3,4,5},则S∩T= .
x
14.已知集合Mx2x3,Nxxm,若MN,则实数m的取值范围是 .
x2+1(x≤0),
15.如果f (x)=那么f (f (1))= .
-2x(x>0),
16.若函数f(x)=ax3+bx+7,且f(5)=3,则f(-5)=__________.
--
17.已知2x+2x=5,则4x+4x的值是 .
18.在下列从A到B的对应: (1)A=R,B=R,对应法则f:x→y=x2 ; (2) A=R,B=R,对应法则f:x
1
→y=; (3)A=(0,+∞),B={y|y≠0},对应法则f:x→y=±x;(4)A=N*,B={-1,1},对应法
x-3
则f:x→y=(-1)x 其中是函数的有 .(只填写序号) 三、解答题(共70分)
32log319.(本题满分10分)计算:2log32-log3+log38-55.
9
20.(本题满分10分)已知U=R,A={x|-1≤x≤3},B={x|x-a>0}. (1)若AB,求实数a的取值范围;
(2) 若A∩B≠,求实数a的取值范围.
y
21.(本题满分12分)已知二次函数的图象如图所示. (1)写出该函数的零点; (2)写出该函数的解析式.
1 O 1 -1
-3 3 x
22.(本题满分12分)已知函数f(x)=lg(2+x),g(x)=lg(2-x),设h(x)=f(x)+g(x). (1)求函数h(x)的定义域;
(2)判断函数h(x)的奇偶性,并说明理由. 23.(本题满分12分)销售甲、乙两种商品所得利润分别是P(万元)和Q(万元),它们与投入资金t(万元)的关31
系有经验公式P=t,Q=t.今将3万元资金投入经营甲、乙两种商品,其中对甲种商品投资x(万元).
55
求:(1)经营甲、乙两种商品的总利润y(万元)关于x的函数表达式;
(2)总利润y的最大值.
24.(本题满分14分)已知函数f (x)=1
x
2.
(1)判断f (x)在区间(0,+∞)的单调性,并用定义证明; (2)写出函数f (x)=1
x2的单调区间.
试卷答案
一、选择题(每小题5分,共60分)
1.A 2.B 3. D 4.C 5.C 6.D 7.B 8.A 9.B 二、填空题(每小题5分,共30分) 13.{2,3}14.m
15.5 16.11 17.23 18.(1)(4)
.D 11.A
.D[ 10 12
三、解答题(共70分)
329
19.解 原式=log34-log3+log38-3=log3(4××8)-3=log39-3=2-3=-1.
932
20.解(1)B={x|x-a>0}={x|x>a}.由AB,得a<-1,即a的取值范围是{a| a<-1};(2)由A∩B
≠,则a<3,即a的取值范围是{a| a<3}. 21.(1)函数的零点是-1,3;
(2)函数的解析式是y=x2-2x-3.
2+x>0,
22.解(1)由 得-2<x<2.所以函数h(x)的定义域是{x|-2<x<2}.
2-x>0,
(2) ∵h(-x)=lg(2-x)+lg(2+x)=h(x),∴h(x)是偶函数. 23.解(1)根据题意,得y=1321
(2) y=-(x-)2+.
5220
33921
∵∈[0,3],∴当x=时,即x=时,y最大值=. 2242021
答:总利润的最大值是万元.
20
24.解(1) f (x)在区间(0,+∞)为单调减函数.证明如下: 11x22-x12(x2-x1)( x2+x1)
设0<x1<x2,f (x1)-f (x2)=2-2=22=.
x1x2x1x2x12x22
(x2-x1)( x2+x1)
因为0<x1<x2,所以(x1x2)2>0,x2-x1>0,x2+x1>0,即>0.
x12x22所以f (x1)-f (x2) >0,即所以f (x1) >f (x2),f (x)在区间(0,+∞)为单调减函数. 11
(2) f (x)=2的单调减区间(0,+∞);f (x)=2的单调增区间(—∞,0).
xx
31
x+(3-x),x∈[0,3]. 55