您好,欢迎来到华佗小知识。
搜索
您的当前位置:首页盾构施工控制测量

盾构施工控制测量

来源:华佗小知识


中铁三局西南公司盾构施工作业指导书

盾构施工控制测量

中铁三局西南公司盾构工程段

页脚下载后可删除,如有侵权请告知删除!

1.盾构施工控制测量

1.1 目的和适用范围

为了保证盾构机准确定位始发,根据设计蓝图计算出的隧道中心线在标准偏差允许范围内掘进并准确贯穿,制定本作业指导书。

本作业指导书适用于采用盾构施工的区间隧道工程。 1.2 工作内容及技术要点

盾构施工测量主要分为四局部:地面控制、联系测量、洞内控制和竣工测量,具体内容及技术要求见表1.2-1。

表1.2-1 盾构施工测量内容及技术要点

序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 井下 及洞内控制 地面 控制 联系 测量 工作内容 交接桩及复测 地面控制点加密 平面联系测量 高程联系测量 洞门钢环安装定位 始发洞门测量,托架及反力架定位 隧道平纵断面图识图及隧道中心线线型计算 盾构机导向系统初始化 洞内延伸导线点及延伸水准点布设及测量 盾构机姿态人工复核 管片姿态测量 到达洞门测量,托架定位,纠偏方案制定 贯穿误差测量 竣工测量 技术要点 导线应防止长短边 优先采用两井定向 1.3 测量前准备工作

1 盾构施工前,工程部应成立专门的测量组织机构,测量人员应具备相应的测量技能等级及执业资格。

1 工程应配置精度满足要求的测量仪器,全站仪测角精度不低于2″,测距精度不低于Ⅱ级〔5~10mm〕。

页脚下载后可删除,如有侵权请告知删除!

1 盾构施工前,应编制测量方案,并按程序经过审查、批准前方可实施。 1.4 测量作业 1.4.1 交接桩及复测

1 工程中标后,交接桩资料包括平面控制点坐标及高程以及相应的“点之记〞,经业主方代表〔或者业主委托的第三方测量〔以下简称“业主测量队〞〕单位代表〕、施工承包方代表签字确认后生效,并到各控制桩点现场确认。

2 施工承包方完成接桩后,应及时编写复测方案并组织实施。复测成果上报监理及业主〔或业主测量队〕审查。如发现有交桩控制点精度不满足要求,应在复测报告中明确申请业主测量队进展复测确认。

3 一条区间隧道交桩控制点应不少于6个,即在隧道两端各有2个以上平面控制点和1个以上水准点。

4 按照精细导线的要求进展控制导线复测,具体要求按照?城市轨道交通工程测量标准?〔GB 50308-2021〕“〞执行。 1.4.2 地面控制点加密

1 加密导线点与交桩控制点宜形成附合导线,附合导线的边数宜少于12个,相邻的短边不宜小于长边的1/2,个别短边的边长不应小于100m。

2 受条件,加密导线点与交桩控制点只能形成闭合导线时,应在?城市轨道交通工程测量标准?〔GB 50308-2021〕要求根底上增加至少一倍的观测频率。

3 加密水准点应设置在施工影响范围之外且比拟稳固的地方,至少每半年对加密水准点与交桩水准点进展一次联测。 1.4.3 平面联系测量

1 平面联系测量一般可采用一井定向〔如图1.4.3-1〕、两井定向〔如图1.4.3-2〕,投点方式可采用钢丝或者投点仪。

2 一井定向联系三角形测量具体要求按照?城市轨道交通工程测量标准?〔GB 50308-2021〕“〞执行。

3 两井定向联系测量

1〕在盾构施工时,可以利用车站两个端头井或者是一个端头井和中间的出土口位置进展两井定向。

2〕左右线的地下控制边可以同时测量,但应分开计算。

页脚下载后可删除,如有侵权请告知删除!

3〕利用两侧端头井吊钢丝或放置投点仪,按照常规导线测量方法在地面上测量钢丝坐标,在井下测量导线的水平角和边长,按照无定向导线方法进展平差计算,推算井下控制边的坐标和方位角,见图。

4〕 受现场条件,只能利用一个端头井和中间的出土口时,应保证井下控制边长度,增加测量次数,提高精度。 1.4.4 高程联系测量

1 用于高程联系测量的近井水准点必须与加密水准点或者交桩水准点联测前方可使用。

2 高程联系测量采用井上井下两台水准仪同时观测,具体要求按照?城市轨道交通工程测量标准?〔GB 50308-2021〕“〞执行。

3高程联系测量示意图见图,井下水准点B的高程计算公式为:

HBHAa1(b1a2)b2

其中:HB——B点的高程;

HA——A点的高程。 1.4.5 洞门钢环安装定位

1 盾构井端墙构造施工时,采用全站仪放样出洞门中心线,控制底部和顶部两局部钢环连接处的中心位置;采用水准仪先在洞门施工附近位置引测出一个标高控制点,洞门钢环就位过程中,直接调整底部和顶部的标高。

2 定位完成后应采取必要的钢环固定及保护措施,保持钢环的状态,防止移位。

1.4.6 成型洞门测量

1 洞门钢环施工完成后应及时对洞门位置进展测量,计算钢环实际位置,为盾构始发、接收定位提供依据。

2 成型洞门测量宜采用具有免棱镜测距功能的全站仪,使用直接测取洞门钢环内边缘三维坐标的方法进展。 1 托架及反力架定位

1 根据实测的洞门位置以及线路设计情况,计算托架及反力架的定位坐标和高程,如附录A中的图所示。

2 采用全站仪及水准仪进展托架及反力架的定位放样。

页脚下载后可删除,如有侵权请告知删除!

3 假设实测洞门中心与设计中心相差较大,应以实际洞门位置为基准进展放

样坐标及高程的计算。

4 对于高程的控制,始发时一般抬高10~20mm,接收时一般降低10~20mm。 1.4.8 隧道中心线计算

1 根据设计蓝图中的平、纵断面图及平曲线偏移量图进展隧道中心线计算。 2 隧道中心线计算完成后,载入盾构机导向系统的源文件应上报上一级测量管理部门复测,经公司审批前方可使用。

3 源文件应通过经格式化过的U盘载入盾构机导向系统工业电脑,载入后在导线系统中,再次对计算元素或坐标成果进展核对,确保数据准确无误。 1.4.9 盾构机导向系统初始化

1 盾构组装完成,开场进展导向系统初始化。对于主动铰接型盾构还需将铰接收为0。

2 棱镜导向系统初始化方法

1〕在盾尾内采用全站仪实测盾构机轴线上的两个点〔附录A中的图中的Z1、Z2〕三维坐标,采用水准仪实测盾尾两侧同步注浆壳位置〔附录A中的图A.0.5中的a、b点〕高差,量取a、b间距。

2〕利用Z1、Z2的坐标推算盾构机前点、后点坐标,盾构机的俯仰角及偏航角,利用a、b点的高差及间距推算盾构机的滚动角。

3〕用实测的盾构机滚动角及俯仰角等对倾斜仪数据进展修正,用计算的盾构机前点、后点坐标输入〔或修正〕棱镜局部坐标。

3 激光导向系统初始化方法

1〕使用激光导向系统的盾构机在出厂时已经设置了参考点,并给出了参考点的局部坐标。

2〕采用全站仪直接测量盾构机参考点的三维坐标,计算出盾构机前点、后点坐标,盾构机的俯仰角、偏航角及滚动角。

3〕工厂测量时,已经对激光靶进展了初始设置,盾构机到达施工现场组装完成后,直接运行激光导向系统,可以测得盾构机前点、后点坐标,盾构机的俯仰角、偏航角及滚动角。

4〕一般情况下,盾构机出厂后,激光靶位置相对于盾构机是固定的,在激

页脚下载后可删除,如有侵权请告知删除!

光靶初始设置功能界面中,只输入人工测量与导向系统测量得到的盾构机的俯仰角、偏航角及滚动角差值, 其他参数不变,进展激光靶初始设置。初始设置完成后,激光导向系统测量的盾构机前点、后点坐标,盾构机的俯仰角、偏航角及滚动角应与人工测量结果一致。

1.4.10 洞内延伸导线及延伸水准点的布设与测量

1 洞门延伸导线边长在150m为宜,曲线段不能小于60m,宜沿着隧道两侧穿插布设,视线距离隧道侧壁应大于。水准点每120m~150m左右布设一个。

2 延伸导线点宜采用强制对中托盘,固定在两侧管片上〔如附录A中的图所示〕。采用导线测量的方法对延伸导线的角度和边长进展测量,并计算延伸导线点坐标。

3 延伸水准点宜采用在管片底部埋设不锈钢测点,采用精细水准仪对延伸水准路线进展测量,并计算延伸水准点高程。

4 对延伸导线点及延伸水准点编号、标识、记录,防止错用或误用,并采取相应的保护措施。

5 延伸导线点坐标及水准点高程必须经双检复核后使用。

6 每增加一个洞内控制点应该及时测量,对于一条隧道,在掘进100m左右及掘进到一半时进展至少两次联系测量及延伸控制点的复测。联系测量计算的井下起始边方位角较差小于12″时取平均值进展洞内导线计算。 1.4.11 盾构机姿态人工复核

1 每掘进100米,应按照盾构导向系统初始化的方法进展一次盾构机姿态人工测量,与导向系统显示姿态进展比照,防止导向系统错误,影响隧道施工质量。在小曲线半径线路上应加大人工复核频率。

2 在进展盾构机姿态人工测量前,首先需要对洞内延伸导线及延伸水准路线进展复核,确保洞门延伸控制点的精度。

3 洞内延伸控制点精度随着隧道长度增加而降低,因此,盾构机姿态人工测量的成果主要用于与导向系统显示成果进展比照,防止导向系统错误,当二次比照结果在±20mm之内时,不修正导向系统参数。 1.4.12 管片姿态测量

1 管片姿态测量采用横尺法〔如附录A中的图所示〕。

页脚下载后可删除,如有侵权请告知删除!

2 每向前掘进20m必须对相应部位的管片进展姿态测量。

3 在盾构始发后的100m范围内,每次管片姿态测量应该包含盾尾内的一环管片、刚脱出盾尾的2~3环管片及其余可以进展管片姿态测量的管片,确保至少应有10环以上,同时有在拼装完成未脱出盾尾时的姿态及此时的盾尾间隙测量数据、盾尾姿态数据;刚脱出盾尾时的管片姿态数据及脱出盾尾稳定后的姿态数据,,以便于统计、分析管片上浮量。 1.4.13 贯穿前纠偏计算制定

1 在隧道贯穿前100m进展地面控制网、联系测量及洞门延伸控制网的复测,根据复测成果对接收洞门实际位置进展测量,对盾构机导向系统进展复站,根据实测洞门数据及盾构机姿态数据,制定贯穿数据控制值。

2 盾构机姿态控制应在进入加固体之前〔无加固时,应为距离接收洞门10m左右〕,将盾构机趋向与线路走向调整为近似平行关系,前点的姿态数据与制定的贯穿数据控制值相符。

3 按照?城市轨道交通工程测量标准?〔GB50308-2021〕要求,贯穿面一侧的隧道长度大于1500m时,必须加测陀螺边方位角,对洞门延伸导线数据进展修正。 1 贯穿误差测量

1 贯穿测量包括平面贯穿测量和高程贯穿测量。隧道贯穿后应利用贯穿面两侧平面和高程控制点进展贯穿误差测量。

2 平面贯穿测量方法

1) 采用中线法测量的隧道,贯穿之后,应从相向测量的两个方向向贯穿面延伸中线,并各钉一临时桩A、B。丈量出两临时桩A、B之间的距离,即得隧道的实际横向贯穿误差,A、B两临时桩的里程之差,即为隧道的实际纵向贯穿误差。

2) 采用地下导线作洞内控制的隧道,可由进洞的任一方向,在贯穿面附近钉一临时桩点,然后由相向的两个方向对该点进展测角和量距,各自计算临时桩点的坐标。两组成果Y坐标的差数即为实际的横向贯穿误差,X坐标之差为实际的纵向贯穿误差〔或者将两组坐标差投影至贯穿面及其垂直的方向上,得出横向和纵向贯穿误差〕。在临时桩点上安置全站仪测出角度,以便求得导线的角度闭合差〔也称方位角贯穿误差〕。

页脚下载后可删除,如有侵权请告知删除!

3 高程贯穿测量方法

由隧道两端洞口附近的水准点向洞内各自进展水准测量,分别测出贯穿面附近的同一水准点的高程,其高程差即为实际的高程贯穿误差。 1 竣工测量

1 竣工测量内容

依据?城市轨道交通工程测量标准?,盾构隧道区间竣工测量主要为线路横断面测量,横断面测量是通过对盾构隧道的限界控制点位置的测量,确定各个限界控制点与线路中线的关系,即与线路中线的水平距离和距底板的垂距,圆形隧道横断面测点布置参见附录A中的图。

2 竣工测量方法

1〕测设线路中线点必须以区间贯穿平差后的施工控制点为起算依据。 2〕线路中线点应分段与施工控制点联测并形成附合导线,平差后应对线路中线点依据设计位置进展归化改正;同时,以贯穿平差后的高程控制点为依据,施测线路中线点的高程。

3〕一般情况下,按照直线段区间每6m、曲线段每5m(盾构可按4环)放样线路中心线,在中心线的法线上按照断面图用水准仪器〔或全站仪〕测量所对应的标高后,用红油漆进展标记。

4〕断面构造类型变化处应分别测量各类型断面数据, 曲线段各线路要素点如:直缓点ZH〔或缓直点HZ、直圆点ZY、圆直点YZ〕、圆缓点YH〔或缓圆点HY〕,竖曲线起点、终点、曲中点应进展横断面测量。

5〕施工偏差较大段应加测断面。

6〕将全站仪架在每个断面上〔需置0后视,后拨90度转到基法线上〕用全站仪的免棱镜功能直接测量支距并记录;或将全站仪架在洞内导线点上设站后直接测量每个断面点的坐标,并记录。

3 将竣工测量数据按照业主规定的格式填表提交设计及业主等相关单位。 1.5 质量控制

1.5.1 地面控制导线复测精度较低

1 原因分析

1〕该问题主要是加密导线网型设计不好导致,交接桩之后,根据施工需要

页脚下载后可删除,如有侵权请告知删除!

进展地面导线加密,加密导线点的选择应尽量使边长等距且高差较小,加密导线点与交桩点之间尽量构成附合导线。加密导线点尽量设置在施工影响范围以外的区域。

2〕此外,通过大量实践说明,全站仪的测距精度对于地面控制导线复测精度有很大影响。影响全站仪测距精度的主要因素有温度气压等环境参数设定问题、全站仪自身测距问题、棱镜问题、三脚架不稳定、边长改正等。

2 对策

1〕地面控制导线的复测数据精细导线测量作业,必须严格按照标准要求,使用空盒气压计及温度表测定观测时的环境温度,输入仪器内,每站都应进展设置,这一环节对全站仪测距影响很大,尤其是在冬季或者夏季气候变化较大的时候。

2〕边长改正与各个城市轨道交通工程坐标系投影面高程设置及工程所在地的实际高程有关,跟所测边长长度有关,一般情况下边长小于300m时改正数很小,可以忽略。

3〕三脚架应经常维护,防止由于三脚架松动引起测量过程中的错误,降低测量精度。每次加设仪器的时候,将三脚架加设稳定后,用手拧一下,看是否会活动,确保三脚架不会拧动前方能架设仪器进展观测。

4〕全站仪经长时间使用或者使用过程中的一些碰撞等,也会引起测距精度降低的情况,遇到这种情况时应及时与全站仪售后效劳部门联系,对全站仪进展调校。

5〕全站仪配套棱镜质量对全站仪的测距精度也有很大的影响,因此在全站仪配套棱镜的购置上,优先考虑购置进口原装的棱镜,购置时需要对棱镜测距精度进展实地的比对检测,确保满足精度前方可购置。 1.5.2 联系测量井下起始边精度低

1 原因分析

该问题主要是由于井下起始边过短造成。对于1000m以上的隧道,井下起始边长度最少不小于80m。在进展井下起始边设置时,充分对车站内情况进展现场勘查,起始边一般设置在侧墙一侧,也可以设置在车站中部,以通视及观测方便为准。联系测量一条区间隧道至少应做4次以上,始发前做两次,互差小于12″

页脚下载后可删除,如有侵权请告知删除!

时取平均值进展洞内导线计算。

2 对策

在联系测量的实施过程中,周围环境的影响、钢丝直径、重锤的设置等均会对联系测量精度产生影响。建议联系测量最好在停顿施工的情况下进展,钢丝在满足承载力要求的前提下越细越好,重锤的重量应满足标准要求,重锤浸入油桶中,待完全静止稳定后再开场进展测量。 1.5.3 洞内导线精度较差

1 原因分析

该问题主要是由于洞内导线边长设计不好,出现长短边导致。 2 对策

在盾构始发前就应该根据隧道平纵断面图进展洞内延伸导线点的设计,在通视情况允许的条件下,尽量将边拉长,兼顾等距原那么,做好洞内导线点的设计。 1.5.4 测量仪器的使用及维护不到位

1 盾构施工必须使用状态良好的Ⅱ级及以上的全站仪,仪器使用及维护由各工程部负责,按时进展测量仪器的年检。对于盾构机上配套的全站仪,也应该按照一年一次的频率进展检验,并出具相应的检验证书。

2 全站仪及棱镜基座磨损主要是由于强制对中托盘锈蚀引起,为防止此问题,托盘宜采用铜螺丝。

3 对于盾构机导向系统的维护除了对配套全站仪进展年检之外,还应注意盾构机组装、盾构机拆卸以及盾构机维护保养阶段导向系统的管理与保护。防止在盾构机拆机、组装及存放阶段导向系统部件丧失。盾构机导向系统的主要部件:全站仪、处理器、激光靶、棱镜、数据交换的黄盒子均是有使用寿命的,在盾构机正常掘进过程中应进展清洁维护,调查了解清楚各部件的寿命,确认其是否与盾构机的寿命相匹配,做好各部件到期更新的准备工作。 1.6 平安控制

1.6.1 外业测量中应加强对测量仪器的保护,炎热天气必须观测时必须给仪器打伞。

1.6.2 仪器应该轻拿轻放,每次测量完毕后必须将仪器装箱后携带。 1.6.3 在进展联系测量时,井口严禁进展吊装作业。

页脚下载后可删除,如有侵权请告知删除!

1.6.4 隧道内测量,在轨道上架设仪器,测量过程中应特别注意电瓶车运行,最好利用倒班时间进展隧道内控制点测量。

1.6.5 测量加密控制点埋设时应充分考虑对环境的影响,在与地方部门及相关单位充分沟通根底上,将对环境的影响降低到最小。

1.6.6 在隧道内设置的控制点,标记点号应整齐美观,严禁在隧道内乱涂乱画。 附录A 盾构施工测量

两井定向联系测量示意图见图1-1。

图1-1 两井定向示意图

高程联系测量示意图见图A.0.2。

图1-2 高程联系测量示意图

托架定位示意图见图1-3。

页脚下载后可删除,如有侵权请告知删除!

图1-3 托架定位示意图

盾构导向棱镜系统初始化平面位置、俯仰及趋向测量示意图见图A.0.4。

图1-4 盾构导向棱镜系统初始化平面位置、俯仰及趋向测量示意图

盾构导向棱镜系统初始化滚动角测量示意图见图1-5。

页脚下载后可删除,如有侵权请告知删除!

图1-5 盾构导向棱镜系统初始化滚动角测量示意图

洞内延伸导线托盘示意图见图1-6。

图1-6 洞内延伸导线托盘示意图

采用横尺法进展管片姿态测量示意图见图1-7。

页脚下载后可删除,如有侵权请告知删除!

全站仪测量视线管水准气泡第n环第n+1环横尺法测量管片姿态平面示意图0013R反射片中心到隧道中心高差为一定值a反射片横尺横尺法测量管片姿态立面示意图

图1-7 采用横尺法进展管片姿态测量示意图

说明:使用全站仪定向后,直接测量横尺中心位置的反射片三维坐标,实测平面位置即为成型隧道在该环的实际平面位置,实测高程+图中定值a即为实测成型隧道中心高程。

页脚下载后可删除,如有侵权请告知删除!

圆形隧道横断面测点布置示意图见图A.0.8。

图1-8 圆形隧道横断面测点布置示意图

【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】

页脚下载后可删除,如有侵权请告知删除!

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo0.cn 版权所有 湘ICP备2023017654号-2

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务