Culvert Scaffold Construction MS
0
目 录 Table of Contents
一、编制依据 Preparation Basis……………………………………………………2
二、工程概况 Project Description.................................................. ...................2
三、支架及模板施工 Support and Formwork Construction……………………2 四、支架计算 Support Construction Calculation ……………….……….…..…3
五、环保及安全措施
Environmental Protection and Safety Measures………………………………11
1
一、编制依据:
I. Preparation Basis
《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001) Technical Code for Safety of Steel Tubular Scaffold with Couplers (JGJ130-2001) 《混凝土结构设计规范》GB50010-2002 Code for Design of Concrete Structures GB50010-2002 《建筑结构荷载规范》(GB 50009-2001)
Load Code for the Design of Building Structures (GB 50009-2001) 《钢结构设计规范》(GB 50017-2003)
Code for Design of Steel Structures (GB 50017-2003) 二、工程概况
II. Project Description
本方案涵盖施工道路所有涵洞的现浇盖板,采用扣件式满堂脚手架支撑,盖板为厚度 140mm、 180mm、200mm、300mm、700mm 的钢筋砼。
This scheme covers cast-in-site cover pates for all culverts for construction roads, which are supported with fastener type full hall scaffolds. The cover plate is of reinforced concrete with thickness of 140mm, 180mm, 200mm, 300mm, and 700mm respectively, 三、支架及模板施工
III. Support and Formwork Construction 1 满堂支架搭设 1. Full hall support erection
支架采用φ48 脚手杆搭设,采用满堂支架,支架支撑于地板 C25 钢筋砼上搭设脚手架。 The support is erected with φ48 scaffold rods and applied with full hall supports. The support is supported on the floor’s C25 reinforced concrete for the purpose of scaffold erection. 四 支架施工计算
IV. Support Construction Calculation 1 计算依据: 1. Calculation basis
在计算过程中,主要结构的力学性能取如下数据:
In the calculation process, mechanical properties of the main structure are taken with the following data:
1.1 . 支 架 钢 管 :
φ4.8cm×3.5mm , 截 面 积 A = 4.3cm2 , 截 面 惯 性 矩
I =12.188cm ,W = 5.078cm3 ,回转半径:i =1.578cm 。
4
1.1.Support’s steel pipe: φ4.8cm×3.5mm , sectional area A = 4.3cm2 , section moment of
inertia
I =12.188cm , W = 5.078cm3 , radius of gyration i =1.578cm .
4
1.2.方木采用红松:单重 650kg / m ,顺纹压应力[σ ] =12
3
y
,顺纹弯应力[ w ] 12MPa
MPa σ =
,
2
横纹弯应力[σ y ] =1.8MPa ,顺纹剪应力[ j ] 1.3MPa
τ = ,弯曲剪应力[τ ] =1.9MPa ,弹性模量
E = 9×10 MPa 。
3
1.2 . Square timber made from Korean pine: single weight parallel to grain [σ ] =12
y
650kg / m , compressive stress
3
, bending stress parallel to grain [ ] 12
σ =
w
MPa
, bending
MPa
stress cross grain [σ ] =1.8
y
, shear stress parallel to grain [ ] 1.3
MPa τ =
j
, bending shear
MPa
stress [τ ] =1.9MPa , modulus of elasticity E = 9×103 MPa . 模板与木块自重: 0.35KN/㎡
Deadweight of formwork and timber block: 0.35KN/㎡ 混凝土与钢筋自重: 25KN/ m3 Deadweight of concrete and rebar: 25KN/ m3 倒混凝土荷载标准值: 1.0KN/㎡
Standard load value for poured concrete: 1.0KN/㎡ 施工均布荷载标准值: 1.0KN/㎡
Standard uniformly distributed load for construction: 1.0KN/㎡
2 支架及模板计算:
2. Support and formwork calculation: 2.1 700mm 盖板 2.1 700mm cover plate
木横梁间距 20cm,立杆布置间距为 60cm×60cm; Wood beam spacing of 20cm, and pole layout spacing of 60cm × 60cm;
① 竹胶板底模计算
① Bamboo plywood bottom form calculation
底模采用 1.5cm 竹胶板,设计强度取 E=9200MPa,[σ ] =13MPa 。木横梁采用 5cm×10cm 方 木,跨间宽度 L0 = 20cm ,净距 L =10cm 。按跨中最不利位置计算,取 1m 为计算长度计算: The bottom form shall be 1.5cm Bamboo Plywood, with design strength E = 9200MPa and
[σ ] =13MPa . Wood- beam shall 5cm × 10cm square wood, with inter-span width
clear distance L =10cm . It shall be calculated as per most unfavorable midspan position. Length of 1m is taken for calculation. 底模板 q1=0.35N/m2×1m=0.35×10-3KN/m Bottom form: q1=0.35N/m2×1m=0.35×10-3KN/m 砼重 q2=2526N/m3×0.7m×1m=17.5KN/m
L =
0
cm and
20
Concrete weight: q2=2526N/m3×0.7m×1m=17.5KN/m
3
砼重 1.2 倍冲击系数:q2=17.5N/m×1.2=21KN/m
Concrete weight under 1.2 times of shock factor: q2=17.5N/m×1.2=21KN/m 振捣砼 q3=1.5kpa×1m=1.5KN/m Vibrated concrete: q3=1.5kpa×1m=1.5KN/m 施工人群 q4=1.0kpa×1m=1.0KN/m Construction crowd: q4=1.0kpa×1m=1.0KN/m 总计荷载 ∑q= q1+ q2+ q3++ q4=23.5 KN/m Total load: ∑q= q1+ q2+ q3++ q4=23.5 KN/m 强度: ql2/10=[σ]×bh2/6 Strength: ql2/10=[σ]×bh2/6
h=√(ql2×6/(10×[σ]×b)) =0.003293m=3.293mm 刚度: ql4/128EI= l/400 Rigidity: ql4/128EI= l/400
I=bh3/12 h=3√(ql3×400×12/(E×128×l)) =4.01mm
间距 10cm,1.5cm 厚竹胶板可满足。
Spacing 10cm, which can be satisfied with 1.5cm thickness bamboo plywood. ② 木横梁
② Wood beam
砼计算高度为 0.7
Concrete calculation height: 0.7 底模板 q1=0.35N/m2×0.2m=0.00007KN/m Bottom form: q1=0.35N/m2×0.2m=0.00007KN/m 板砼重 q2=2526N/m3×0.7m×0.2m=3.5KN/m Plate concrete weight: q2=2526N/m3×0.7m×0.2m=3.5KN/m 砼重 1.2 倍冲击系数: q2=3.5N/m×1.2=4.2KN/m Concrete weight under 1.2 times of shock factor: q2=3.5N/m×1.2=4.2KN/m 振捣砼 q3=2kpa×0.2m=0.4KN/m Vibrated concrete: q3=2kpa×0.2m=0.4KN/m 施工人群 q4=1.5kpa×0.2m=0.3KN/m Construction crowd: q4=1.5kpa×0.2m=0.3KN/m 总计荷载 ∑q= q1+ q2+ q3++ q4=4.9 KN/m Total load: ∑q= q1+ q2+ q3++ q4=4.9 KN/m
最大支反力 Rmax=1.143ql=1.143×4.9×0.6=3.36 KN/m
4
Maximum bearing reaction force: Rmax=1.143ql=1.143×4.9×0.6=3.36 KN/m 最大剪力 Qmax=0.607ql=0.607×4.9×0.6=1.784 KN Maximum shear force: Qmax=0.607ql=0.607×4.9×0.6=1.784 KN 最大弯矩 Mmax=0.077ql2=0.077×4.9×0.62=0.136 KN.m Maximum bending moment: Mmax=0.077ql2=0.077×4.9×0.62=0.136 KN.m 最大挠度 fmax=0.0632ql4/EI=12×0.0632×4.9×0./(9×109×0.05×0.13)=1.08 mm Maximum deflection: fmax=0.0632ql4/EI=12×0.0632×4.9×0./(9×109×0.05×0.13)=1.08 mm 木横梁的强度及刚度检算:
Computational check of strength and rigidity of the wood beam: 支撑处方木横放的局部承压:σab=R/A
Local bearing pressure for transversely placed square timber at support: σab=R/A 局部受压: σab=R/A=3.36×103/(0.1×0.2×0.6) Local compression: σab=R/A=3.36×103/(0.1×0.2×0.6)
=0.28<2.6Mpa
弯应力:σab=M/W=M/(ab2)/6=6×0.136×103/(0.05×0.12) Bending stress: σab=M/W=M/(ab2)/6=6×0.136×103/(0.05×0.12)
=1.163Mpa<12Mpa
剪应力:τmax=3Q/(2bh)=3×1.784×103/(2×0.05×0.1) Shear Stress: τmax=3Q/(2bh)=3×1.784×103/(2×0.05×0.1)
=0.53 Mpa<1.9Mpa
刚度: f/L =1.1/600=0.001833<0.0025 Rigidity: f/L =1.1/600=0.001833<0.0025 木横梁采用 5cm×10cm 方木,间距 20cm 可满足要求。 Wood beam shall be 5cm × 10cm square timber; a spacing of 20cm can meet the requirements. (1) 板底支撑钢管计算
(1) Calculation of support steel pipe at plate bottom
700mm 厚板底支撑横向钢管计算,纵距 la=0.6m,立杆横距 lb=0.6m
Calculation of transverse support steel pipe at bottom of 700mm thickness plate: longitudinal distance la=0.6m; transverse distance of the pole lb=0.6m. ⑴ 横向支撑钢管按照均布荷载作用下的连续梁计算。
(1) Continuous beam calculation for transverse support steel pipe in accordance with uniformly distributed loads.
q
600
600
600
支撑钢管计算简图 (mm)
Calculation sketch of support steel pipe (mm)
0.566
5
0.625
支撑钢管计算弯矩图(kN·m)
Bending moment calculation diagram of support steel pipe (kN·m)
3.83 4.66
15.73
撑钢管计算剪力图(kN)
Shear force calculation diagram of support steel pipe (kN)
荷载的计算:
Calculation of the load:
①钢筋混凝土板自重(kN/m):
① Deadweight of reinforced concrete plate (kN/m):
q11 = 25.000×0.70×0.600=10.5kN/m ②模板的自重线荷载(kN/m): ②Deadweight line load of formwork (kN/m):
q12 = 0.350×0.600=0.21kN/m ③活荷载(kN/m): ③ Live load (kN / m):
经计算得到,活荷载标准值 q2 = 2.000×0.600=1.2kN/m Based on calculation, standard value of live load q2 = 2.000×0.600=1.2kN/m 静荷载 q1 = 1.2×10.5+1.2×0.21=12.85kN/m Static load q1 = 1.2×10.5+1.2×0.21=12.85kN/m 活荷载 q2 = 1.4×1.2=1.68kN/m Live load q2 = 1.4×1.2=1.68kN/m
组合荷载: Combined load:
q=q1+q2=15.73kN/m
(2) 抗弯强度计算
(2) The bending strength calculation
最大弯矩 M = 0.1ql2=0.1×15.73×0.6×0.6=0.566kN.m Maximum moment M = 0.1ql2=0.1×15.73×0.6×0.6=0.566kN.m 最大剪力 Q=0.6×15.73×0.6=5.663kN Maximum shear force Q=0.6×15.73×0.6=5.663kN 最大支座力 N=1.1×15.73×0.6=10.38kN Maximum bearing force N=1.1×15.73×0.6=10.38kN
抗弯计算强度 f=M/W=111.46N/mm2 小于 205N/mm2
6
Calculated bending strength f=M/W=111.46N/mm2, less than 205N/mm2 纵向钢管的抗弯计算强度小于 205.0N/mm2,满足要求
That calculated bending strength of longitudinal steel pipe is less than 205N/mm2, which can meet the requirements.
v=0.677×ql4/100EI=0.5mm
支撑钢管的最大挠度为 0.5mm 小于 600/150 与 10 mm,满足要求! That maximum deflection of the support steel pipe is 0.5mm and less than 600/150 and 10 mm, which can meet the requirements. (3) 立杆的稳定性计算 (3) Calculation of pole stability 立杆的稳定性计算公式
The pole stability calculation formula
其中 N —— 立杆的轴心压力设计值,它包括:
Wherein, N ——axial pressure design value of the pole, which includes: 横杆的最大支座反力 N1=9.551kN (已经包括组合系数 1.4)
Maximum bearing reaction force of the pole N1=9.551kN (already including combination coefficient of 1.4)
脚手架钢管的自重 N2 = 1.2×0.129×3.9=0.604kN Deadweight of scaffolding steel pipe N2 = 1.2×0.129×3.9=0.604kN 计算轴心力设计值 N
Calculated axial pressure design value N
N = 9.551+0.604=10.155kN
查《建筑施工手册》第四版表 5-16 得:μ=1.8,λ=μh/i=1.8×1.8/0.016=202, 查《建筑施工
手册》第四版表 5-18(插入法) = 0.177
According to Table 5-16 in Architecture Construction Manual (Version 4), μ=1.8, and with
λ=μh/i=1.8×1.8/0.016=202, according to Table 5-18 (interpolation method) in Architecture Construction Manual (Version 4), = 0.177
不考虑风荷载时,立杆的稳定性计算公式
When wind load is neglected, pole stability calculation formula is:
=N/ A≤[f]
其中 N —— 立杆的轴心压力设计值 (kN);N =10.155 kN
Wherein, N ——axial pressure design value (kN) of the pole; N =10.155 kN —— 轴心受压立杆的稳定系数,由λ=μh/i 查表得到
——stability coefficient of the pole with center under axial pressure; with λ=μh/I, it can be
obtained from the table.
i —— 计算立杆的截面回转半径 (mm);i = 16
i ——Calculated section radius of gyration (mm) of the pole; i = 16 A —— 立杆截面面积 (mm2); A =4 A ——sectional area (mm2) of the pole; A = 4
—— 钢管立杆抗压强度计算值 (N/mm2)
——Calculated compressive strength value of steel pipe pole (N/mm2) [f] —— 钢管立杆抗压强度设计值,[f] = 205.00N/mm2
[f] ——Compressive strength design value of steel pipe pole, [f] = 205.00N/mm2
7
计算得 =21.3N/mm2,立杆的稳定性计算 < [f],满足要求!
The calculated =21.3N/mm2 and requirements!
所以脚手架稳定
< [f] in the pole stability calculation meet the
So the scaffolding is stable
脚手架立杆布置纵距 la=0.6m,立杆横距 lb=0.6m。
For scaffolding, longitudinal distance of pole la=0.6m, and transverse distance of pole lb=0.6m.
3. 300mm 及以下厚度盖板
3. Cover plate of 300mm and below thickness
木横梁间距 20cm,立杆布置纵横间距为 120cm×90cm.
Wood beam spacing of 20cm, and longitudinal and transverse spacing of 60cm × 60cm for the pole.
3.1 模板与木方布置同上,计算从略。
3.1 Layout of formwork and square timber is same as above, and calculation thereof is so omitted.
3.2 板底支撑钢管计算
3.2 Calculation of support steel pipe at plate bottom
(1)300mm 厚板底支撑横向钢管计算,纵距 la=0.9m,立杆横距 lb=0.9m (1) Calculation of transverse support steel pipe at bottom of 300mm thickness plate: longitudinal distance la=0.9m; transverse distance of the pole lb=0.9m. 横向支撑钢管按照均布荷载作用下的连续梁计算。
Continuous beam calculation for transverse support steel pipe in accordance with uniformly distributed loads
q
900
900 900
支撑钢管计算简图 (mm)
Calculation Sketch of Support Steel Pipe (mm)
0.968
0.705
支撑钢管计算弯矩图(kN·m)
Bending Moment Calculation Diagram of Support Steel Pipe (kN·m)
3.47 4.34
8
11.958
撑钢管计算剪力图(kN)
Shear Force Calculation Diagram of Support Steel Pipe (kN)
荷载的计算: Calculation of the load:
1 钢筋混凝土板自重(kN/m):
① Deadweight of reinforced concrete plate (kN/m):
q11 = 25.000×0.30×0.9=6.75kN/m 2 模板的自重线荷载(kN/m): ② Deadweight line load of formwork (kN/m):
q12 = 0.350×0.9=0.315kN/m 3 活荷载(kN/m): ③ Live load (kN / m):
经计算得到,活荷载标准值 q2 = 2.000×0.9=1.8kN/m Based on calculation, standard value of live load q2 = 2.000×0.9=1.8kN/m 静荷载 q1 = 1.2×6.75+1.2×0.315=8.478kN/m Static load q1 = 1.2×6.75+1.2×0.315=8.478kN/m 活荷载 q2 = 1.4×1.2=1.68kN/m Live load q2 = 1.4×1.2=1.68kN/m
组合荷载: Combined load:
q=q1+q2=11.958kN/m
(2) 抗弯强度计算
(2) The bending strength calculation
最大弯矩 M = 0.1ql2=0.1×11.958×0.9×0.9=0.968kN.m Maximum moment M = 0.1ql2=0.1×11.958×0.9×0.9=0.968kN.m 最大剪力 Q=0.6×11.958×0.9=6.457kN Maximum shear force Q=0.6×11.958×0.9=6.457kN 最大支座力 N=1.1×11.958×0.9=11.838kN Maximum bearing force N=1.1×11.958×0.9=11.838kN
抗弯计算强度 f=M/W=190.62N/mm2 小于 205N/mm2
Calculated bending strength f=M/W=190.62N/mm2, less than 205N/mm2 纵向钢管的抗弯计算强度小于 205.0N/mm2,满足要求
That calculated bending strength of longitudinal steel pipe is less than 205N/mm2, which can meet the requirements.
v=0.677×ql4/100EI=2.4mm
支撑钢管的最大挠度为 2.4mm 小于 900/150 与 10 mm,满足要求!
That maximum deflection of the support steel pipe is 2.4mm and less than 900/150 and 10 mm , which can meet the requirements. (3) 立杆的稳定性计算 (3) Calculation of pole stability
9
立杆的稳定性计算公式
The pole stability calculation formula
其中 N —— 立杆的轴心压力设计值,它包括:
Wherein, N ——axial pressure design value of the pole, which includes: 横杆的最大支座反力 N1=9.551kN (已经包括组合系数 1.4)
Maximum bearing reaction force of the pole N1=9.551kN (already including combination coefficient of 1.4)
脚手架钢管的自重 N2 = 1.2×0.129×3.9=0.604kN Deadweight of scaffolding steel pipe N2 = 1.2×0.129×3.9=0.604kN 计算轴心力设计值 N
Calculated axial pressure design value N
N = 9.551+0.604=10.155kN
查《建筑施工手册》第四版表 5-16 得:μ=1.8,
λ=μh/i=1.8×1.8/0.016=202, 查《建筑施工手册》第四版表 5-18(插入法) = 0.177
According to Table 5-16 in Architecture Construction Manual (Version 4), μ=1.8, and, with
λ=μh/i=1.8×1.8/0.016=202, according to Table 5-18 (interpolation method) in Architecture Construction Manual (Version 4), = 0.177
不考虑风荷载时,立杆的稳定性计算公式
When wind load is neglected, pole stability calculation formula is
=N/ A≤[f]
其中 N —— 立杆的轴心压力设计值 (kN);N =10.155 kN
Wherein, N ——axial pressure design value (kN) of the pole; N =10.155 kN —— 轴心受压立杆的稳定系数,由λ=μh/i 查表得到
——stability coefficient of the pole under axial pressure; with λ=μh/I, it can be obtained from the table
i —— 计算立杆的截面回转半径 (mm);i = 16
i ——Calculated section radius of gyration (mm) of the pole; i = 16 A —— 立杆截面面积 (mm2); A =4 A ——sectional area (mm2) of the pole; A = 4
—— 钢管立杆抗压强度计算值 (N/mm2)
——Calculated compressive strength value of steel pipe pole (N/mm2) [f] —— 钢管立杆抗压强度设计值,[f] = 205.00N/mm2
[f] ——Compressive strength design value of steel pipe pole, [f] = 205.00N/mm2 计算得 =24N/mm2,立杆的稳定性计算 < [f],满足要求! The calculated =24N/mm2 and < [f] in the pole stability calculation meet the requirements!
脚手架立杆布置纵距 la=0.9m,立杆横距 lb=0.9m,稳定。
The scaffold in case of longitudinal distance of pole la=0.6m and transverse distance of pole lb=0.6m is stable. 4 脚手架示意图
4. Schematic diagram of scaffolding
10
防护栏杆
guardrail
砼现浇板
Concrete cast-in-site plate
涵 台
Abutment
涵洞脚手架
Formwork
涵 台 Abutment
板厚 700mm 支架示意图
Schematic Diagram of Support with Plate Thickness of 700mm
防护栏杆
guardrail
砼现浇板
Concrete cast-in-site plate
涵 台
Abutment
涵 台
Abutment
涵洞脚手架
Formwork
板厚 300mm 支架示意图
Schematic Diagram of Support with Plate Thickness of 300mm
五 环保及安全措施:
Environmental Protection and Safety Measures:
1、 1
本分项施工所涉及的 HES 管理程序明细表(主要部分) The involved HES management procedures schedule in the project (main parts)
程序文件编号 Series Number
11
HES 程序文件名
Name 是否 备注 需要 Remark
WYP-TS00-HES-PCD-CJG-000-00002-00
HES 管理计划
If need
HES Management Plan
分包商管理计划
Y
WYP-TS00-HES-PCD-CJG-000-00003-00 WYP-TS00-HES-PCD-CJG-000-00004-00 WYP-TS00-HES-PCD-CJG-000-00005-00 WYP-TS00-HES-PCD-CJG-000-00006-00 WYP-TS00-HES-PCD-CJG-000-00007-00 WYP-TS00-HES-PCD-CJG-000-00008-00
Subcontractor
s
2
3 4 5 6 7
Management Plan
安全工作规范手册
SWP Manual
应急预案程序
ERP procedure
医疗应急程序
MERP Procedure
事故调查与报告程序
Y
Y
IIR procedure
现场安保及交通计划 Site Security & Traffic Plan
环境保护程序
8 Y Y
9
WYP-TS00-HES-PCD-CJG-000-00009-00 Environmental
10
WYP-TS00-HES-PCD-CJG-000-00010-00 WYP-TS00-HES-PCD-CJG-000-00011-00
11 12 13
Protection Procedure
受伤早期管理程序
EIM Procedure
危险分析及工作安全
分析程序 HA&JSA Procedure
工作许可程序
PTW procedure
劳保用品程序
PPE procedure 设备检查程序 Equipment Inspection procedure
危险化学品信息沟通
程序 Hazardous Chemical Infor Communication Procedure
现场交叉作业程序 Field SIMOPS procedure
受限空间准入程序
CSE procedure
高空作业程序
Work at Height
吊车吊装作业程序 Crane & Lifting Procedure
Y Y Y Y
WYP-TS00-HES-PCD-CJG-000-00012-00 WYP-TS00-HES-PCD-CJG-000-00013-00
14
WYP-TS00-HES-PCD-CJG-000-00014-00
15
WYP-TS00-HES-PCD-CJG-000-00015-00
16 17 18 19
WYP-TS00-HES-PCD-CJG-000-00016-00 WYP-TS00-HES-PCD-CJG-000-00017-00 WYP-TS00-HES-PCD-CJG-000-00018-00
WYP-TS00-HES-PCD-CJG-000-00019-00
Y
12
20
WYP-TS00-HES-PCD-CJG-000-00020-00
危险源隔离程序
WYP-TS00-HES-PCD-CJG-000-00021-00 21
Hazardous Isolation Procedure
临时用电安全程序 Temp Electricity Safety Procedure
爆破作业程序
Blasting procedure 挖掘作业程序 Excavation Procedure
脚手架作业程序 Scaffolding procedure
Y
22
23
WYP-TS00-HES-PCD-CJG-000-00022-00
WYP-TS00-HES-PCD-CJG-000-00023-00
24
WYP-TS00-HES-PCD-CJG-000-00024-00
Y
WYP-TS00-HES-PCD-CJG-000-00025-00 WYP-TS00-HES-PCD-CJG-000-00026-00 WYP-TS00-HES-PCD-CJG-000-00027-00
25 26 27
热工作业程序
Hot work procedure
提升机操作程序
Elevator Procedure
短期雇员程序
SSE procedure
注:以上表格所列出的是在 HES 的 27 项管理程序中本分项施工所涉及的主要部分,“Y” 表示需要。
Note: all the above mentioned HES procedures, which are mainly from the 27 HES procedures , are applicable and involved in this project. Y means need. 2、
序号 SN 01 02 03 04
所需要办理的作业许可证明细 :All needed PTW Schedule
作业证名称 是否需要 PTW Name If need 工作许可证 Y PTW
受限空间作业许可
Y 证
CSE PTW
挖掘作业许可证 Excavation PTW
热工作业许可证 Hot Work PTW
爆破作业许可证 Blasting PTW 高空作业证 Y WAH PTW 吊装作业证 Lifting PTW
备注
remarks
脚手搭设 formwork erection
05 06 07
混凝土浇筑和脚手架搭设
Concrete casting and formwork erection
注:在办理作业许可前,均进行工作安全分析(JSA)。
Note: When go through the PTW, the JSA must be made before the approval of PTW.
3 满堂支架搭设安全技术措施:
3. Safety technical measures for full hall support erection
13
支架搭设采用人工实施,并严格按照设计图纸进行搭架。 Support erection shall be carried out manually in strict accordance with design drawings.
搭设支架前,应组织人员对进场的钢管、扣件、杆件进行检查。首先,应有产品质量合格证,钢 管、碗口杆件表面应平直光滑,钢管、碗口杆件的外径、壁厚、端面等的偏差应满足规定要求;钢管、 扣件、碗口杆件均不应有裂缝、结疤、分层、错位、硬弯、毛刺、压痕和深的划道;钢管、碗口杆件 必须涂有防锈漆。通过检验合格的钢管、扣件才能使用。
Before support erection, personnel shall be organized to check the steel pipes, fasteners, and rods delivered on site. Firstly, they shall be accompanied with product quality certificates; surfaces of steel pipes and cuplock rods shall be flat and smooth; the deviations of outer diameter, wall thickness, and end surface of steel pipes and cuplock rods shall meet the requirements as specified; the steel pipes, fasteners, and cuplock rods shall not be subject to crack, scarring, stratification, dislocation, hard bend, burrs, dents and deep scratch; steel pipes and cuplock rods must be coated with anti-rust paint. The steel pipes and fasteners not meeting the above conditions shall not be used,and only can be used after them being inspected qualified.
搭设支架前,应根据需要进行放线定位。严禁将不同直径的钢管、碗口杆件混合使用;钢管与相 连接的扣件应匹配。
Before support erection, setting-out and positioning shall be carried out as required. Never use steel pipes and cuplock rods of different diameters together in a mixed manner; the steel pipes and the connecting fasteners shall be matched.
立杆在搭设时,上下的连接在高度方向上应相互错开,立杆上下连接应密实、牢固。搭设过程中, 应经常对立杆的竖直度进行检测,当偏差超出规范值,应立即纠偏。整体式基础的涵洞,直接在基础 上搭设脚手架,分离式基础的涵洞,在基础经过夯实后,脚手架搭设在 2×5cm 木板上。脚手架顶部 采用顶托调平,顶托及可调底座调节螺杆伸出长度不超过 200mm During erection of poles, upper and lower connections shall be staggered in the height direction; upper and lower connections of the poles shall be dense and firm. During erection, verticality of poles shall be inspected from time to time; when deviation is out of limit, it shall be corrected immediately.As for the culvert with integral base, shall erect scaffolding directly on the foundation,while the culvert with separated base, shall erect scaffolding on the 2cm thickness of board after the foundation being compacted. The scaffolding shall be adjusted by jack, and the jack screw rod shall not extend beyond 200mm from Scaffold tobe.
当立杆搭设至一定的高度,在墩柱处,应采取措施将支架与墩柱抱紧,连为一体,钢管与墩柱混
14
凝土面。平杆搭设应与立杆同步进行,平杆在连接后好,应将碗口杆件上的扣件打紧。 When the poles are erected to a certain height, measures shall be taken to ensure close enclasp as one piece between support and pier column; steel pipes and the pier column concrete surface. Erection of horizontal rod shall be synchronized with the pole; after connection of horizontal rod, the fasteners on the cup-lock rods shall be secured.
平杆按照每隔一道加设一排的要求搭设,每层的平杆应在同一平面上。平杆连接完成且将扣件打 紧后,方可进行立杆的接高。
The horizontal rods shall be erected according to requirement that one additional row is required for every other layer. The horizontal rods at each layer shall be on the same plane. After horizontal rod connection is completed and fasteners are secured, it is only allowed for connecting of additional poles.
支架搭设过程中,须设置剪刀撑、横向斜撑,并且应随立杆、纵横向水平杆等同步搭设。横向、 纵向剪刀撑每隔 3 排设置一道,剪刀撑、横向斜撑均要求接地。 During erection of supports, diagonal bracings and transversely inclined struts must be provided, and erected together with poles and longitudinal and transverse horizontal rods. One longitudinal and transverse diagonal bracing shall be provided for every other 3 rows; the diagonal bracing and transversely inclined strut shall be earthed.
施工过程中,为保证安全,可在集中作业段采用脚手板搭设施工平台,脚手板厚度不小于 5cm。 During construction process, in order to ensure the safety, scaffold board based construction platform can be erected at areas subject to concentrated operations; scaffold board thickness shall be not less than 5cm.
脚手板应铺满、铺稳,并尽量将脚手板与支撑杆件相连接。木脚手板应采用杉木或松木制作。 The scaffold boards shall be laid fully and stably, and scaffold boards shall be connected with support rods as much as possible. Wooden scaffold boards shall be made of fir or pine timber.
底板铺设应从一端逐步推进,确保每一块竹胶板钉牢后,方可在上面站人,避免悬空被人踩反。 模板铺设完成后,应在最外侧及悬空端部架设安全网。
Bottom board laying shall be proceeded progressively at one end; when each Bamboo Plywood is nailed firmly, standing thereon is only allowed, thus to avoid falling. After completing laying of formwork, safety net shall be erected at outermost side and floating end.
搭设完成后申请报验,合格后才能使用。
After erected,it shall be applied for inspection, and it can be put into use only after being inspected
15
qualified.
16
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo0.cn 版权所有 湘ICP备2023017654号-2
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务