您好,欢迎来到华佗小知识。
搜索
您的当前位置:首页全等三角形中的截长补短 学生版

全等三角形中的截长补短 学生版

来源:华佗小知识


中考要求

板块 全等三角形的性质及判定 A级要求 第九讲

全等三角形中的截长

补短

考试要求 B级要求 C级要求 会运用全等三角形的性质和判定解决有关问题 掌握全等三角形的概念、判定和会识别全等三角形 性质,会用全等三角形的性质和判定解决简单问题 知识点睛

全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法:

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.

(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).

要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法:

(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS):三边对应相等的两个三角形全等.

(4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.

全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 奥数赛点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.

2011年·暑假 初二数学·第9讲·学生版 page 1 of 1

例题精讲

板块一、截长补短

【例1】 (06年北京中考题)已知ABC中,A60,BD、CE分别平分ABC和.ACB,

BD、CE交于点O,试判断BE、CD、BC的数量关系,并加以证明.

AAEODE1O423FD

BC

BC

【例2】 如图,点M为正三角形ABD的边AB所在直线上的任意一点(点B除外),作

DMN60,射线MN与∠DBA外角的平分线交于点N,DM与MN有怎样的数量关系?

DNAMBE

【例3】 如图2-9所示.已知正方形ABCD中,M为CD的中点,E为MC上一点,且∠BAE=2

∠DAM.求证:AE=BC+CE.

ADMEBC

【例4】 (“希望杯”竞赛试题)如图,AD⊥AB,CB⊥AB,DM=CM=a,AD=h,CB=k,

∠AMD=75°,∠BMC=45°,则AB的长为 ( )

2011年·暑假 初二数学·第9讲·学生版 page 2 of 2

A. a B. k C.

kh D. h 2DCAMB

【例5】 已知:如图,ABCD是正方形,∠FAD=∠FAE. 求证:BE+DF=AE.

AD

FBCE

【例6】 以ABC的AB、AC为边向三角形外作等边ABD、ACE,连结CD、BE相交

于点O.求证:OA平分DOE.

DAEDFOBCB

【例7】 (北京市数学竞赛试题,天津市数学竞赛试题)如图所示,ABC是边长为1的正三

角形,BDC是顶角为120的等腰三角形,以D为顶点作一个60的MDN,点M、N分别在AB、AC上,求AMN的周长.

A

NMBDC

2011年·暑假 初二数学·第9讲·学生版 page 3 of 3

【例8】 如图所示,ABC是边长为1的正三角形,BDC是顶角为120的等腰三角形,以

D为顶点作一个60的MDN,点M、N分别在AB、AC上,求AMN的周长.

ANMDBC

【巩固】(全国数合竞赛试题) 如图所示,在ABC中,ABAC,D是底边BC上的

一点,E是线段AD 上的一点,且BED2CEDBAC,求证BD2CD.

A

EBDC

【例9】 五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°,求证:AD平分∠CDE

ABECD

【巩固】(2009浙江湖州)若P为ABC所在平面上一点,且APBBPCCPA120,

则点P叫做ABC 的费马点.

2011年·暑假 初二数学·第9讲·学生版 page 4 of 4

⑴ 若点P为锐角ABC的费马点,且ABC60,PA3,PC4,则PB的值为________;

⑵ 如图,在锐角ABC外侧作等边ACB′,连结BB′. PAPBPC. 求证:BB′过ABC的费马点P,且BB′AB'B

C

板块二、全等与角度

【例10】 如图,在ABC中,BAC60,AD是BAC的平分线,且ACABBD,求

ABC的度数.

ABDC

【例11】 在等腰ABC中,ABAC,顶角A20,在边AB上取点D,使ADBC,

求BDC.

AD

BC

【例12】 (“勤奋杯”数学邀请赛试题) 如图所示,在ABC中,ACBC,C20,又

M在AC上,N在BC上,且满足BAN50,ABM60,求NMB.

2011年·暑假 初二数学·第9讲·学生版 page 5 of 5

CMNAB

【例13】 在四边形ABCD中,已知ABAC,ABD60,ADB76,BDC28,

求DBC的度数.

DC

AB

【例14】 (日本算术奥林匹克试题) 如图所示,在四边形ABCD中,DAC12,

CAB36,ABD48,DBC24,求ACD的度数.

DC

AB

【例15】 (河南省数学竞赛试题) 在正ABC内取一点D,使DADB,在ABC外取一点

E,使DBEDBC,且BEBA,求BED.

AE

DBC

BACBCA44,【例16】 (北京市数学竞赛试题) 如图所示,在ABC中,M为ABC内一点,使得MCA30,MAC16,求BMC的度数.

2011年·暑假 初二数学·第9讲·学生版 page 6 of 6

BMAC

【巩固】如图所示,在ABC中,已知BAC80,ABC60,D为三角形内一点,且

DAB10,DBA20,求ACD的度数.

A

DBC

家庭作业

【习题1】点M,N在等边三角形ABC的AB边上运动,BD=DC,∠BDC=120°,∠MDN=60°,求证MN=MB+NC.

ANMBCD

2011年·暑假 初二数学·第9讲·学生版 page 7 of 7

【习题2】(南斯拉夫数学奥林匹克试题,黄冈市数学竞赛试题) 在ABC内取一点M,使

得MBA30,MAB10.设ACB80,ACBC,求AMC.

2011年·暑假 A初二数学·第9讲·学生版 CMB

page 8 of 8

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo0.cn 版权所有 湘ICP备2023017654号-2

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务