您好,欢迎来到华佗小知识。
搜索
您的当前位置:首页人教A版高中数学必修3第三章 概率3.1 随机事件的概率教案(3)

人教A版高中数学必修3第三章 概率3.1 随机事件的概率教案(3)

来源:华佗小知识
2019-2020学年高中数学 随机事件的概率教案 新人教版必修3

在自然界与人类的社会活动中会出现各种各样的现象,既有确定性现象,又有随机现象.随机现象在日常生活中随处可见,概率是研究随机现象规律的学科,它为人们认识客观世界提供了重要的思维模式和解决问题的方法.概率统计的应用性强,有利于培养学生的应用意识和动手能力.

我们知道,概率是统计学的理论基础,但本书的内容安排是先统计后概率.这样的安排,一方面是考虑到统计与概率学科发展的历史是先有统计,为了研究统计结论的可靠性问题,概率得到了发展;另一方面是考虑到学生的学习心理,统计在前,使得学生在学习过程中可以接触到大量统计案例,学习过程中的实践性可以大大增强.

本章包括随机事件的概率的统计定义,概率的意义及其基本性质;古典概型的特征及概率的计算公式;几何概型的特征及概率的计算公式;利用随机模拟的方法估计随机事件的概率. 本章包括3节,教学约需8课时,课时分配如下(仅供参考): 3.1 3.2 3.3 本章复习

§3.1 随机事件的概率 §3.1.1 随机事件的概率

一、教材分析

概率是描述随机事件发生可能性大小的量度,它已渗透到人们的日常生活中,例如:彩票的中奖率,产品的合格率,天气预报、台风预报等都离不开概率.概率的准确含义是什么呢?我们用什么样的方法获取随机事件的概率,从而激发学生学习概率的兴趣?本节课通过学生亲自动手试验,让学生体会随机事件发生的随机性和随机性中的规律性,通过试验,观察随机事件发生的频率,可以发现随着实验次数的增加,频率稳定在某个常数附近,然后再给出概率的定义.在这个过程中,体现了试验、观察、探究、归纳和总结的思想方法,是新课标理念的具体实施. 二、教学目标 1、知识与技能:

(1)了解随机事件、必然事件、不可能事件的概念; (2)正确理解事件A出现的频率的意义;

(3)正确理解概率的概念和意义,明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系;

(4)利用概率知识正确理解现实生活中的实际问题. 2、过程与方法:

(1)发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;

(2)通过对现实生活中的“掷币”,“游戏的公平性”,、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法. 3、情感态度与价值观:

(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系; (2)培养学生的辩证唯物主义观点,增强学生的科学意识. 三、重点难点

教学重点:

1.理解随机事件发生的不确定性和频率的稳定性.

随机事件的概率 古典概型 几何概型 约3课时 约2课时 约2课时 约1课时 2.正确理解概率的意义. 教学难点:

1.对概率含义的正确理解. 2.理解频率与概率的关系. 四、课时安排 1课时 五、教学设计 (一)导入新课

思路1

日常生活中,有些问题是很难给予准确无误的回答的.例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等.尽管没有确切的答案,但大体上围绕一个数值在变化,这个数值就是概率.教师板书课题:随机事件的概率.

思路2

1名数学家=10个师

在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力.这句话有一个非同寻常的来历.

1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战”搞得盟军焦头烂额.

为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后发现,舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性.一定数量的船(为100艘)编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌人相遇的概率就越大.

美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应.

在自然界和实际生活中,我们会遇到各种各样的现象.如果从结果能否预知的角度来看,可以分为两大类:一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定性现象;另一类现象的结果是无法预知的,即在一定的条件下,出现那种结果是无法预先确定的,这类现象称为随机现象.随机现象是我们研究概率的基础,为此我们学习随机事件的概率.

(二)推进新课、新知探究、提出问题 (1)什么是必然事件?请举例说明. (2)什么是不可能事件?请举例说明. (3)什么是确定事件?请举例说明. (4)什么是随机事件?请举例说明.

(5)什么是事件A的频数与频率?什么是事件A的概率? (6)频率与概率的区别与联系有哪些?

活动:学生积极思考,教师引导学生考虑问题的思路,结合实际的情形分析研究.(1)导体通电时,发热;抛一块石头,下落;“如果a>b,那么a-b>0”;这三个事件是一定要发生的.但注意到有一定的条件.(2)在常温下,焊锡熔化;在标准大气压下且温度低于0 ℃时,冰融化;“没有水,种子能发芽”;这三个事件是一定不发生的.但注意到有一定的条件.(3)抛一块石头,下落;“如果a>b,那么a-b>0”;在标准大气压下且温度低于0 ℃时,冰融化;“没有水,种子能发芽”;这四个事件在一定的条件下是一定要发生的或一定不发生的.是确定的,不是模棱两可的.(4)掷一枚硬币,出现正面;某人射击一次,中靶;从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签;“某电话机在1分钟内收到2次呼叫”;这四个事件在一定的条件下是或者发生或不一定发生的,是模棱两可的.(5)做抛掷一枚硬币的试验,观察它落地时哪一个面朝上.通过学生亲自动手试验,突破学生理解的难点:“随机事件发生的随机性和随机性中的规律性”.通过试验,观察随机事件发生的频率,可以发现随着实验次数的增加,频率稳定在某个常数附

近,然后再给出概率的定义.在这个过程中,重视了掌握知识的过程,体现了试验、观察、探究、归纳和总结的思想方法,也体现了新课标的理念. 具体如下:

第一步每个人各取一枚硬币,做10次掷硬币试验,记录正面向上的次数和比例,填在下表中:

姓名 试验次数 正面朝上总次数 正面朝上的比例 思考 试验结果与其他同学比较,你的结果和他们一致吗?为什么? 第二步 由组长把本小组同学的试验结果统计一下,填入下表. 组次 试验总次数 正面朝上总次数 正面朝上的比例 思考 与其他小组试验结果比较,正面朝上的比例一致吗?为什么?

通过学生的实验,比较他们实验结果,让他们发现每个人实验的结果、组与组之间实验的结果不完全相同,从而说明实验结果的随机性,但组与组之间的差别会比学生与学生之间的差别小,小组的结果一般会比学生的结果更接近0.5.

第三步 用横轴为实验结果,仅取两个值:1(正面)和0(反面),纵轴为实验结果出现的频率,画出你个人和所在小组的条形图,并进行比较,发现什么? 第四步 把全班实验结果收集起来,也用条形图表示. 思考

这个条形图有什么特点?

引导学生在每组实验结果的基础上统计全班的实验结果,一般情况下,班级的结果应比多数小组的结果更接近0.5,从而让学生体会随着实验次数的增加,频率会稳定在0.5附近.并把实验结果用条形图表示,这样既直观易懂,又可以与第二章统计的内容相呼应,达到温故而知新的目的. 第五步 请同学们找出掷硬币时“正面朝上”这个事件发生的规律性. 思考

如果同学们重复一次上面的实验,全班汇总结果与这一次汇总结果一致吗?为什么?

引导学生寻找掷硬币出现正面朝上的规律,并让学生叙述出现正面朝上的规律性:随着实验次数的增加,正面朝上的频率稳定在0.5附近.由特殊事件转到一般事件,得出下面一般化的结论:随机事件A在每次试验中是否发生是不能预知的,但是在大量重复实验后,随着次数的增加,事件A发生的频率会逐渐稳定在区间[0,1]中的某个常数上.从而得出频率、概率的定义,以及它们的关系.一般情况下重复一次上面的实验,全班汇总结果与这一次汇总结果是不一致的,这更说明随机事件的随机性.

进一步总结事件的频数与频率,概括出概率的概念.(6)通过(5)的概括和总结写出频率与概率的区别与联系.

讨论结果:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件(certain event),简称必然事件. (2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件(impossible event),简称不可能事件.

(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件.

(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件(random event),简称随机事件;确定事件和随机事件统称为事件,用A,B,C,…表示.

(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数na为事件A出现的频数(frequency);称事件A出现的比例fn(A)=

nA为事件A出现的频率(relative nfrequency);对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,

把这个常数记作P(A),称为事件A的概率(probability).

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数na与试验总次数n的比值

nA,它具n有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小.我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小.频率在大量重复试验的前提下可以近似地作为这个事件的概率.

频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率.在实际问题中,通常事件的概率未知,常用频率作为它的估计值.

频率本身是随机的,在试验前不能确定.做同样次数的重复实验得到事件的频率会不同.

概率是一个确定的数,是客观存在的,与每次试验无关.比如,一个硬币是质地均匀的,则掷硬币出现正面朝上的概率就是0.5,与做多少次实验无关.

(三)应用示例

思路1

例1 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件. (1)“抛一石块,下落”.

(2)“在标准大气压下且温度低于0℃时,冰融化”; (3)“某人射击一次,中靶”; (4)“如果a>b,那么a-b>0”; (5)“掷一枚硬币,出现正面”; (6)“导体通电后,发热”;

(7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”; (8)“某电话机在1分钟内收到2次呼叫”; (9)“没有水分,种子能发芽”; (10)“在常温下,焊锡熔化”.

分析:学生针对有关概念,思考讨论,教师及时指点,为后续学习打下基础.根据自然界的规律和日常生活的经验积累,根据定义,可判断事件(1)(4)(6)是必然事件;事件(2)(9)(10)是不可能事件;事件(3)(5)(7)(8)是随机事件.

答案:事件(1)(4)(6)是必然事件;事件(2)(9)(10)是不可能事件;事件(3)(5)(7)(8)是随机事件.

点评:紧扣各类事件的定义,结合实际来判断.

例2 某射手在同一条件下进行射击,结果如下表所示:

射击次数n 击中靶心次数m 击中靶心的频率10 8 20 19 50 44 100 92 200 178 500 455 m n(1)填写表中击中靶心的频率;

(2)这个射手射击一次,击中靶心的概率约是多少?

分析:学生回顾所学概念,教师引导学生思考问题的思路,指出事件A出现的频数na与试验次数n的比值即为事件A的频率,当事件A发生的频率fn(A)稳定在某个常数上时,这个常数即为事件A的概率.

解:(1)表中依次填入的数据为:0.80,0.95,0.88,0.92,0.,0.91.

(2)由于频率稳定在常数0.,所以这个射手击一次,击中靶心的概率约是0..

点评:概率实际上是频率的科学抽象,求某事件的概率可以通过求该事件的频率而得之. 变式训练

一个地区从某年起几年之内的新生儿数及其中男婴数如下:

时间范围 新生婴儿数 男婴数 男婴出生的频率 1年内 5 544 2 883 2年内 9 607 4 970 3年内 13 520 6 994 4年内 17 190 8 2 (1)填写表中男婴出生的频率(结果保留到小数点后第3位); (2)这一地区男婴出生的概率约是多少?

答案:(1)0.520 0.517 0.517 0.517 (2)由表中的已知数据及公式fn(A)=这一地区男婴出生的概率约是0.518.

思路2

例1 做掷一枚骰子的试验,观察试验结果.

(1)试验可能出现的结果有几种?分别把它们写出; (2)做60次试验,每种结果出现的频数、频率各是多少?

分析:学生先思考或讨论,教师提示学生注意结果的可能情况,因为每一枚骰子有六个面,每个面上的点数分别是1,2,3,4,5,6,所以应出现六种结果,试验结果可列表求之.

解:(1)试验可能出现的结果有六种,分别是出现1点、2点、3点、4点、5点、6点. (2)根据实验结果列表后求出频数、频率,表略.

例2 某人进行打靶练习,共射击10次,其中有2次中10环,有3次中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多大?中10环的概率约为多大?

分析:学生先思考或讨论,教师提示学生注意结果的可能情况,中靶的频数为9,试验次数为10,所以中靶的频率为

nA即可求出相应的频率,而各个频率均稳定在常数0.518上,所以n9=0.9,所以中靶的概率约为0.9. 10解:此人中靶的概率约为0.9;此人射击1次,中靶的概率为0.9;中10环的概率约为0.2.

(四)知能训练

1.指出下列事件是必然事件、不可能事件、还是随机事件. (1)某地1月1日刮西北风;

2

(2)当x是实数时,x≥0;

(3)手电简的电池没电,灯泡发亮; (4)一个电影院某天的上座率超过50%.

答案:(1)随机事件;(2)必然事件;(3)不可能事件;(4)随机事件.

2.大量重复做掷两枚硬币的实验,汇总实验结果,你会发现什么规律?

解答:随机事件在每次试验中是否发生是不能预知的,但是在大量重复实验后,随着次数的增加,事件发生的频率会逐渐稳定在区间[0,1]中的某个常数上,从而获取随机事件的概率.

点评:让学生再一次体会了试验、观察、探究、归纳和总结的思想方法.

(五)拓展提升

1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( )

A.必然事件 B.随机事件 C.不可能事件 D.无法确定

答案:B

提示:正面向上恰有5次的事件可能发生,也可能不发生,即该事件为随机事件.

2.下列说法正确的是( )

A.任一事件的概率总在(0,1)内 B.不可能事件的概率不一定为0 C.必然事件的概率一定为1 D.以上均不对

答案:C

提示:任一事件的概率总在[0,1]内,不可能事件的概率为0,必然事件的概率为1.

3.下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并回答问题. 每批粒数 发芽的粒数 发芽的频率 2 2 5 4 10 9 70 60 130 116 310 282 700 1 500 2 000 3 000 639 1 339 1 806 2 715 (1)完成上面表格; (2)该油菜子发芽的概率约是多少?

解:(1)填入表中的数据依次为1,0.8,0.9,0.857,0.2,0.910,0.913,0.3,0.903,0.905.(2)该油菜子发芽的概率约为0.7.

4.某篮球运动员,在同一条件下进行投篮练习,结果如下表所示. 投篮次数 进球次数m 进球频率48 36 60 48 75 60 100 83 100 80 50 40 100 76 m n(1)计算表中进球的频率;

(2)这位运动员投篮一次,进球的概率约为多少?

解:(1)填入表中的数据依次为0.75,0.8,0.8,0.83,0.8,0.8,0.76.(2)由于上述频率接近0.80,因此,进球的概率约为0.80.

(六)课堂小结

本节研究的是那些在相同条件下,可以进行大量重复试验的随机事件,它们都具有频率稳定性,即随机事件A在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A发生的频率逐渐稳定在区间[0,1]内的某个常数上(即事件A的概率),这个常数越接近于1,事件A发生的概率就越大,也就是事件A发生的可能性就越大.反之,概率越接近于0,事件A发生的可能性就越小.因此说,概率就是用来度量某事件发生的可能性大小的量.

(七)作业

完成课本本节练习.

§3.1.2 概率的意义

一、教材分析

按照教学内容交叉编排、螺旋上升的方式,本章是在统计的基础上展开对概率的研究的,而本节又是从频率的角度来解释概率,其核心内容是介绍实验概率的意义,即当试验次数较大时,频率渐趋稳定的那个常数就叫概率.本节课的学习,将为后面学习理论概率的意义和用列举法求概率打下基础.因此,我认为对概率的正确理解和它在实际中的应用是本次教学的重点.

学生初学概率,面对概率意义的描述,他们会感到困惑:概率是什么,是否就是频率?因此辩证理解频率和概率的关系是教学中的一大难点.由于本节课内容非常贴近生活,因此丰富的问题情境会激发学生浓厚的兴趣,但学生过去的生活经验会给这节课的学习带来障碍,因此正确理解每次试验结果的随机性与大量随机试验结果的规律性是教学中的又一大难点. 二、教学目标 1.知识与技能:

(1)正确理解概率的意义;

(2)利用概率知识正确理解现实生活中的实际问题. 2.过程与方法:

通过对现实生活中的“掷币”、“游戏的公平性”、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法. 3.情感态度与价值观:

通过对概率的实际意义的理解,体会知识来源于实践并应用于实践的辩证唯物主义观,进而体会数学与现实世界的联系. 三、重点难点

教学重点:理解概率的意义.

教学难点:用概率的知识解释现实生活中的具体问题. 四、课时安排 1课时 五、教学设计 (一)导入新课

思路1

酒宴中的“行酒令”,其规则是:先按饮酒人制作出与人数相等的完全一致的酒签,然后由其中一人将欲设的签数放到左手(不可为0),然后由其余人猜其左手签数,要求只能从1至总人数的个数中任选一整数,并且后猜者与先猜者不得重复,当猜者所猜数字与设计者左手中的签数相同时,猜者就需饮酒,这个游戏规则是公平的吗?为此我们必须学习概率的意义.

思路2

生活中,我们经常听到这样的议论:“天气预报说昨天降水概率为90%,结果根本一点雨都没下,天气预报也太不准确了.”这是真的吗?为此我们必须学习概率的意义.

(二)推进新课、新知探究、提出问题

(1)有人说,既然抛掷一枚硬币出现正面向上的概率为0.5,那么连续抛掷一枚硬币两次,一定是一次正面朝上,一次反面朝上,你认为这种想法正确吗? (2)如果某种彩票中奖的概率为

1,那么买1 000张彩票一定能中奖吗? 1000(3)在乒乓球比赛中,裁判员有时也用数名运动员伸出手指数的和的单数与双数来决定谁先发球,其具体规则是:让两名运动员背对背站立,规定一名运动员得单数胜,另一名运动员得双数胜,然后裁判员让两名运动员同时伸出一只手的手指,两个人的手指数的和为单数,则指定单数的运动员得到先发球权,若两个人的手指数的和为双数,则指定双数胜的运动员得到先发球权,你认为这个规则公平吗?

(4)“天气预报说昨天降水概率为90%,结果根本一点雨都没下,天气预报也太不准确了.”学了概率后,你能给出解释吗?

(5)阅读课本的内容了解孟德尔与遗传学.

(6)如果连续10次掷一枚骰子,结果都是出现1点.你认为这枚骰子的质地均匀吗?为什么?

活动:学生阅读问题,根据学习的概率知识,针对不同的问题给出合理解释,教师引导学生考虑问题的思路和方法:(1)通过具体试验验证便知,以概率的知识来理解,就是:尽管每次抛掷硬币的结果出现正、反面朝上各一次,通过具体的试验可以发现有三种可能的结果:“两次正面朝上”,“两次反面朝上”,“一次正面朝上,一次反面朝上”,而且其概率分别为0.25,0.25,0.5.

几个同学各取一枚同样的硬币(如壹角,伍角,壹元),连续两次抛掷,观察它落地后的朝向,并记录结果,重复上面的过程10次,将所有参与试验的同学结果汇总,计算三种结果发生的频率,估出三种结果的概率,填入下面表格. 试验的总次数:100 出现两次正面朝上 出现两次反面朝上 出现一次正面朝上,一次反面朝上 频数 25 25 50 频率 概率 随着试验次数的增加,可以发现,“一次正面朝上,一次反面朝上”的频率与“两次正面朝上”,“两次反面朝上”的频率不一样,它们分别是0.5,0.25和0.25,进而知道“两次正面朝上”的概率为0.25,“两次反面朝上”的概率为0.25,“一次正面朝上,一次反面朝上”的概率是0.5.

通过上面的试验,我们发现,随机事件在一次试验中发生与否是随机的,但随机中含有规律性,认识了这种随机性的规律性,可以帮助我们准确预测随机事件发生的可能性.

(2)买1 000张彩票,相当于1 000次试验,因为每次试验的结果都是随机的,所以做1 000次试验的结果也是随机的,也就是说,买1 000张彩票有可能没有一张中奖.虽然中奖的张数是随机的,但这种随机性中,具有规律性,随着试验次数的增加,即随着买的彩票的增加,大约有

1的彩票中奖,所以没有一张中奖也1000是有可能的.

请同学们把同样大小的9个白色乒乓球和1个黄色乒乓球放在1个不透明的袋中,然后每次摸出1个球后再放回袋中,这样摸10次,观察是否一定至少有1次摸到黄球.

因为每次摸出1个球相当于1次随机试验,其结果有两种可能:黄球或白球,随着试验次数的增加,会发现摸到白球的频率要比摸到黄球的频率大,但没有1次摸到黄球也是有可能的,所以不一定至少有1次摸

到黄球.

(3)是公平的.由于2人出手指的结果有单数和双数,每个人出单数和双数的机会是相等的,因此,和为单数和双数的机会是相等的,因而是公平的.

(4)天气预报的“降水”是一个随机事件,概率为90%指明了“降水”这个随机事件发生的概率,我们知道:在一次试验中,概率为90%的事件也可能不出现,因此,“昨天没有下雨”并不说明“昨天的降水概率为90%”的天气预报是错误的.

(5)阅读课本的内容后加以说明. (6)利用概率知识加以说明.

讨论结果:(1)这种想法显然是错误的,通过具体的试验可以发现有三种可能的结果:“两次正面朝上”“两次反面朝上”“一次正面朝上,一次反面朝上”,而且其概率分别为0.25,0.25,0.5.

(2)不一定能中奖,因为买1 000张彩票相当于做1 000次试验,因为每次试验的结果都是随机的,即每张彩票可能中奖也可能不中奖,因此,1 000张彩票中可能没有一张中奖,也可能有一张、两张乃至多张中奖. (3)规则是公平的. (4)天气预报的“降水”是一个随机事件,因此,“昨天没有下雨”并不说明“昨天的降水概率为90%”的天气预报是错误的.

(5)奥地利遗传学家(G.Mendel,1822—1884)用豌豆进行杂交试验,下表为试验结果(其中F1为第一子代,F2为第二子代): 性状 种子的形状 茎的高度 子叶的颜色 豆荚的形状 F1的表现 全部圆粒 全部高茎 全部黄色 全部饱满 圆粒5 474 高茎787 黄色6 022 饱满882 F2的表现 皱粒1 850 矮茎277 绿色2 001 不饱满299 圆粒∶皱粒≈2.96∶1 高茎∶矮茎≈2.84∶1 黄色∶绿色≈3.01∶1 饱满∶不饱满≈2.95∶1 孟德尔发现第一子代对于一种性状为必然事件,其可能性为100%,另一种性状的可能性为0,而第二子代对于前一种性状的可能性约为75%,后一种性状的可能性约为25%,通过进一步研究,他发现了生物遗传的基本规律.实际上,孟德尔是从某种性状发生的频率作出估计的.

(6)利用刚学过的概率知识我们可以进行推断,如果它是均匀的,通过试验和观察,可以发现出现各个面的可能性都应该是

1110

,从而连续10次出现1点的概率为()≈0.000 000 001 653 8,这在一次试验(即连续6610次投掷一枚骰子)中是几乎不可能发生的.而当骰子不均匀时,特别是当6点的那面比较重时(例如灌了铅

或水银),会使出现1点的概率最大,更有可能连续10次出现1点.

现在我们面临两种可能的决策:一种是这枚骰子的质地均匀,另一种是这枚骰子的质地不均匀.当连续10次投掷这枚骰子,结果都是出现1点,这时我们更愿意接受第二种情况:这枚骰子靠近6点的那面比较重.原因是在第二种假设下,更有可能出现10个1点.

如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则,例如对上述思考题所作的推断.这种判断问题的方法称为极大似然法.极大似然法是统计中重要的统计思想方法之一.

如果我们的判断结论能够使得样本出现的可能性最大,那么判断正确的可能性也最大.这种判断问题的方法称为似然法.似然法是统计中重要的统计思想方法之一.

(三)应用示例

思路1

例1 为了估计水库中的鱼的尾数,可以使用以下的方法,先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾. 试根据上述数据,估计水库内鱼的尾数.

分析:学生先思考,然后交流讨论,教师指导,这实际上是概率问题,即2 000尾鱼在水库中占所有鱼的

百分比,特别是500尾中带记号的有40尾,就说明捕出一定数量的鱼中带记号的概率为

解:设水库中鱼的尾数为n,A={带有记号的鱼},则有P(A)=因P(A)≈

40,问题可解. 5002000. ① n40, ② 500200040由①②得,解得n≈25 000. n500所以估计水库中约有鱼25 000尾.

变式训练

1.某水产试验厂实行某种鱼的人工孵化,10 000个鱼卵能孵出8 513尾鱼苗,根据概率的统计定答下列问题:

(1)求这种鱼卵的孵化概率(孵化率); (2)30 000个鱼卵大约能孵化多少尾鱼苗?

(3)要孵化5 000尾鱼苗,大概得准备多少鱼卵?(精确到百位)

8513=0.851 3,它近似的为孵化的概率

10000x8513(2)设能孵化x个,则,∴x=25 539, 3000010000解:(1)这种鱼卵的孵化频率为即30 000个鱼卵大约能孵化25 539尾鱼苗. (3)设需备y个鱼卵,则

50008513,∴y≈5 873, y10000即大概得准备5 873个鱼卵.

2.有人告诉你,放学后送你回家的概率如下: (1)50%;(2)2%;(3)90%.

试将以上数据分别与下面的文字描述相配. ①很可能送你回家,但不一定送. ②送与不送的可能性一样多. ③送你回家的可能性极小.

答案:50%→②;2%→③;90%→①.

例2 足球射门与概率

如果你是一名足球运动员,在足球比赛中若遇到罚点球射门时,这时若要罚进不仅仅要靠运气,还要靠智慧的头脑.首先假设不存在射飞或射高的情况.在扑对方向的前提下守门员也不会失误或脱手,也不考虑补射的情况(点球大战中根本不存在).就是说球只有两种状态:射进或被扑出.球员射门有6个方向:中下,中上,左下,右下,左上,右上.而作为守门员,扑球有5种选择:不动,左下,右下,左上,右上.

若①不动可扑出中下和中上两个方向的点球; ②左下可扑出左下和中下;

③右下可扑出右下和中下; ④左上可扑出左上; ⑤右上可扑出右上.

你会用你智慧的大脑运用概率的知识选择射门的方向吗?

解:其中①②③3种选择可扑出两个方向的来球,换言之,这3种选择的效率是其他两种选择的2倍.所以作为一个守门员,面对一个没有经验的对手,扑球应该多选择①②③.那么如何做一个有经验的射手呢?如果你面对的是一个初级的守门员,那么应该清楚他的扑球方向是大致随机的,即随机选择①—⑤.那么从下图(1)可知6个射门方向被堵住的可能性是: 1 51 51 53 51 51 5 所以这种情况下我们要少打中下,其他的五个方向可以任意选择.但如果守门员是一名富有经验的高手,他清楚①②③的效益是④⑤的2倍,他必然会有意识地多扑①②③,而且至少概率是④⑤的2倍.(否则就不能体现这个效益)就是说8次扑救中①②③各两次,④⑤各一次.那么6个射门方向被堵住的概率就变成了: 1 81 47 现在不仅不能射中下,而且还要有意识地多打两个上角,因为进球的概率是.希望这道题目能对你的

8点球大战有所帮助.当然在实战中还要综合考虑脚法、力量、体能、守门员技术及对手心理等等.

变式训练

央视“幸运52”某期节目中公布了这样一道抢答题:在三扇门背后(比如说1号、2号及3号)藏了两只羊与一辆小汽车,如果你猜对了藏汽车的门,则汽车就是你的.现在先让你选择,比方说你选择了1号门,然后主持人打开了一扇门,让你看清楚这扇门背后是只羊,接着问你是否应该重新选择,以增大猜对汽车的概率,你能给出回答吗?1号门背后是汽车的概率变了吗?

解:无论你给出怎样的回答,1号门背后是汽车的概率都是场的应变能力.

思路2

例1 概率与计算机输入法

在使用计算机输入法时,英语中某些字母出现的概率远远高于另外一些字母.当进行了更深入的研究之后,人们还发现各个字母被使用的频率相当稳定,例如:下面就是英文字母使用频率的一份统计表. 字母 频率 字母 频率 字母 频率 空格 0.2 H 0.047 W 0.012 E 0.105 D 0.035 G 0.011 T 0.071 L 0.029 B 0.010 5 O 0.0 4 C 0.023 V 0.008 A 0.063 F 0.022 1 K 0.003 N 0.059 U 0.022 5 X 0.002 I 0.054 M 0.021 J 0.001 R 0.053 P 0.017 5 Q 0.001 S 0.052 Y 0.012 Z 0.001 1 81 41 43 41.这个题意在考查答题者的概率知识与现2 从表中可以看到,空格的使用频率最高,鉴于此,人们在设计键盘时,空格键不仅最大,而且放在了使用最方便的位置.

近年来对汉语的统计研究有了很大的发展.关于汉字的使用频率已有初步统计资料,对常用汉语也作了一些统计研究.这些信息对汉字输入方案等的研制有很大的帮助.使用过汉字拼音输入法的同学们可能有体会.例如:当输入拼音“shu”,则提示有以下选择“1.数书树,4.属,5.署……”.这个显示顺序基本上就是按照拼音为“shu”的汉字出现频率从大到小排列的. ▼ 数 书 树 属 署 输 淑 术 舒 例2 概率与彩票

概率论是研究现实世界随机现象的科学,是近代数学的重要组成部分.它在自然科学以及经济工作中都有着广泛的应用,同时也是数理统计的基础.彩票投注的中奖概率分布完全符合它的原理.彩票的投注方法是一个玩数字游戏.彩票号码的摇出是随机事件,也可以说是一个随机现象,属概率论的一个基本概念. 我们引入彩票的一对常用语“冷门号码”及“热门号码”.有了“热门号码”及“冷门号码”的概念,我们只要捕捉到这种机会及时发现它们,将会提高中奖几率. 概率分布的四条法则:

1(由于不确定因素除外). 21(2)大数、小数出现的次数应各占总数的(由于不确定因素除外).

2(1)奇数、偶数出现的次数应各占总数的

(3)01—10区段、11—20区段、21—30区段,三区段出现的数各占总数的

1(由于不确定因素除外). 3(4)各数出现的次数,随着试验(开奖)次数的增加不断靠**均值(由于不确定因素除外).

综上所述,看来随机的摇球事件随着试验(开奖)次数的增加都会显示出它的某些规律性,而这种规律性可以借助概率论的知识,利用概率统计法分析判断号码.今后我们在选择号码时,首先应学会统计以下几种基本指标:奇偶比、大小比、区域比等.

通过数字统计,运用概率论原理来判断冷热号码出现的周期,分析号码可能出现的区段,缩小精选号码范围,为新一期选择号码提供参考依据,从而达到提高中奖的几率.概率学本身就来源于古代游戏,人们为了更准确地预测结果,依靠一定的数据积累分析,然后算出其出现某种结果的可能性.概率分析就是通过一些复杂的计算,将一些出现概率较小的数字组合删除,从而提高中奖机会.

有专家认为:世界上没有无规律的事情,即使对于彩票而言,也不是完全没有规律可循,只要经过大量的观察,根据统计学的大数规律,就能进行统计预测,提高中奖的几率.

概率学是一门系统科学,一般人了解的概率,不是从理论上认识,仅仅限于经验、时间的表层认识.因此,一般彩民预测中奖号码,与其硬着头皮去盲目胡来,不如运用简单的概率学统计分析方法更简单、更容易掌握.把每期中奖号码出现的次数累加起来,一一进行统计,积累到一定量之后,就能发现各个号码及其相关指标的概率波动特性.彩民们再根据这些进行选号投注,就可以大大提高中奖的几率.

点评:彩票是什么,从经济学意义上说,彩票首先是一种“税”,是无偿征收的一种收入;其次彩票是一种“自愿税”,一种与法定义务无关的、彩民自愿缴纳的税.“无偿”是指没有责任对应于某一具体彩民的下注额给予相应的经济性回报.因为彩票的中奖概率极其微小,其收益与风险不成比例,对于普通老百姓来说,买彩票应只是一种游戏和娱乐.

例3 概率与法律

概率论正越来越多地出现在法庭之上.1968年美国加利福尼亚州的一个案件引起了人们的广泛关注.目击证人说看到一个金发并且扎马尾样发式的白人妇女和一个有八字须和络腮胡的黑人男子在洛杉矶郊区的一个小巷跑出来,而那里正是一位老人刚刚遭受背后袭击和抢劫的地方.这对男女开着一辆部分是黄色的汽车逃跑了.

因此当地逮捕了Jenet和Malcolm夫妇俩,他们有一辆部分是黄色的林肯轿车,她通常把她的金发扎成马尾状.他是一个黑人,尽管被捕时他的胡子刮得很干净,但仍然能看出不久前他还是满脸络腮胡的痕

迹.

在审判中,公诉人指控他夫妇俩有罪的证据是——“数字证明”.以下是由证人指出的特征算出的“保守概率”:

有八字胡的男人1/4, 扎马尾发型的女人1/10, 金发女人1/3,

有络腮胡的黑人男子1/10,

不同种族的夫妇同在一辆车里1/1 000, 部分是黄色的汽车1/10.

公诉人于是得出这些概率的乘积为:1/12 000 000,因此在洛杉矶地区存在另一对有上述特征的夫妇的可能性小于1/10 000 000.

陪审团于是判定这对夫妇有罪.但是加州高院在上诉中驳回了这样的定罪,还列举了几条错误使用概率的论证.由此看来概率论已经成为美国法律诉讼中的重要工具,是判定当事人是否与案件有关的重要依据,这种趋势也必然会来到中国,使得我国的法律诉讼更加科学、客观、公正.

例4 如何得到敏感问题的诚实回答?

在作抽样调查时我们总是许诺说:“绝对会为您保守秘密.”但是被访人往往心有疑虑,在统计行业还不能达到像记者行业那样为当事人绝对保密时,这样的怀疑是理所当然的.但是我们的数据会因此失真,为了得到真实的回答,只能千方百计地得到他们的信任,降低问题的敏感程度.

1965年Stanley.L.Warner发明了一种应用概率的初等概念来消除不信任情绪的方法.这种方法要求被访人随机地选答两个问题中的一个,而不必告诉采访者回答的是哪个问题,两个问题中一个是敏感问题,一个是无关紧要的问题.被访人愿意如实回答,因为只有他们自己知道回答的是哪个问题.

比如:无关紧要的问题是:“你的身份证号码最后一位是奇数吗?”另一个问题是:“你是否吸毒?”然后你要求被访人掷一枚硬币,如果得到正面则回答前一个问题,如果是反面则回答后一个问题,当然调查员不知道他们掷硬币的结果.

假设我们采访了200人,并得到个“是”的回答.因为掷硬币的正反面概率各是1/2,所以我们期望有100人回答前一个问题,因为身份证号码最后一位是奇数或偶数的概率也各是1/2,所以100人中有50人回答“是”.因此回答敏感问题的100人中有-50=14人回答“是”.由此可知被访人群约有14/100=14%吸毒.

刚看到这个问题时觉得有点不可思议,因为这个问题太敏感了.可是仔细想想也很好理解,我们只需要知道被访人群中吸毒者的总数,并不需要知道究竟谁吸毒(这是的任务).正是巧妙的数学工具使我们轻松地得到答案,而且调查的精度也可以控制.

(四)知能训练

课本练习1、2、3.

(五)拓展提升

某商场为迎接国庆举办新产品问世促销活动,方式是买一份糖果摸一次彩,摸彩的器具是绿、白两色的乒乓球,这些乒乓球的大小和质料完全相同.商场拟按中奖率1%设大奖,其余99%为小奖.为了制定摸彩的办法,商场向职工广泛征集方案,对征集到的优秀方案进行奖励.如果你是此商场职工,你将会提出怎样的方案?

注:商场提供的摸彩器材是棱长约30 cm的立方体形木箱,密封良好,不透光,木箱上方可容一只手伸入,另备足够多的白色乒乓球和少量绿色乒乓球.

解:方案一:

在箱内放置100个乒乓球,其中1个为绿色乒乓球,其余99个为白色乒乓球,顾客一次摸出1个乒乓球,

如果为绿色乒乓球,即中大奖,否则中小奖,本方案中大奖的概率为:P1=

11. 1C100100方案二:

在箱内放置14个乒乓球,其中2个为绿色乒乓球,其余12个为白色乒乓球.顾客一次摸出2个乒乓球为绿色,即中大奖;如果摸出的2个乒乓球为白色,或1个为白色、1个为绿色,则中小奖.本方案中大奖的概率为:P2=

11. 2C1491方案三:

在箱内放置15个乒乓球,其中2个为绿色乒乓球,其余13个为白色乒乓球.顾客摸球和中奖的办法与方案二相同.本方案中大奖的概率为:P3=

11. 2105C15方案四:

在箱内放置25个乒乓球,其中3个为绿色乒乓球,其余22个为白色乒乓球.顾客一次摸出2个乒乓球(或分两次摸,每次摸一个乒乓球,不放回),如果摸出的2个乒乓球为绿色,即中大奖;如果摸出的2个乒

C3225241乓球为白色,或1个为白色、1个为绿色,则中小奖.本方案中大奖的概率为:P4=23. 12100C25

(六)课堂小结

概率是一门研究现实世界中广泛存在的随机现象的科学,正确理解概率的意义是认识、理解现实生活中有关概率的实例的关键,学习过程中应有意识形成概率意识,并用这种意识来理解现实世界,主动参与对事件发生的概率的感受和探索.通过以上例题与练习可以感到,数学特别是概率正越来越多地应用到我们的生活当中.它们已经不是数学家手中的抽象理论,而成为我们认识世界的工具.从彩票中奖,到证券分析;从基因工程,到法律诉讼;从市场调查,到经济宏观;概率无处不在.

(七)作业

习题3.1A组2、3.

§3.1.3 概率的基本性质

一、教材分析

教科书通过掷骰子试验,定义了许多事件,及其事件之间的关系,事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念.

教科书通过类比频率的性质,利用频率与概率的关系得到了概率的几个基本性质,要注意这里的推导并不是严格的数学证明,仅仅是形式上的一种解释,因为频率稳定在概率附近仅仅是一种描述,没有给出严格的定义,严格的定义,要到大学里的概率统计课程中才能给出. 二、教学目标 1、知识与技能:

(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;

(2)概率的几个基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)

(3)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系. 2、过程与方法:

通过事件的关系、运算与集合的关系、运算进行类比学习,培养学生的类化与归纳的数学思想。 3、情感态度与价值观:

通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣。 三、重点难点

教学重点:概率的加法公式及其应用. 教学难点:事件的关系与运算.

四、课时安排 1课时 五、教学设计 (一)导入新课

思路1

体育考试的成绩分为四个等级:优、良、中、不及格,某班50名学生参加了体育考试,结果如下:

优 良 中 不及格 85分及以上 75—84分 60—74分 60分以下 9人 15人 21人 5人 在同一次考试中,某一位同学能否既得优又得良? 从这个班任意抽取一位同学,那么这位同学的体育成绩为“优良”(优或良)的概率是多少? 为解决这个问题,我们学习概率的基本性质,教师板书课题.

思路2

(1)集合有相等、包含关系,如{1,3}={3,1},{2,4}{2,3,4,5}等;

(2)在掷骰子试验中,可以定义许多事件如:C1={出现1点},C2={出现2点},C3={出现1点或2点},C4={出现的点数为偶数}…….

师生共同讨论:观察上例,类比集合与集合的关系、运算,你能发现事件的关系与运算吗?这就是本堂课要讲的知识概率的基本性质.

思路3

全运会中某省派两名女乒乓球运动员参加单打比赛,她们夺取冠军的概率分别是2/7和1/5,则该省夺取该次冠军的概率是2/7+1/5,对吗?为什么?为解决这个问题,我们学习概率的基本性质.

(二)推进新课、新知探究、提出问题

在掷骰子试验中,可以定义许多事件如:C1={出现1点},C2={出现2点},C3={出现3点},C4={出现4点},C5={出现5点},C6={出现6点},D1={出现的点数不大于1},D2={出现的点数大于3},D3={出现的点数小于5},E={出现的点数小于7},F={出现的点数大于6},G={出现的点数为偶数},H={出现的点数为奇数},…… 类比集合与集合的关系、运算说明这些事件的关系和运算,并定义一些新的事件. (1)如果事件C1发生,则一定发生的事件有哪些?反之,成立吗? (2)如果事件C2发生或C4发生或C6发生,就意味着哪个事件发生? (3)如果事件D2与事件H同时发生,就意味着哪个事件发生? (4)事件D3与事件F能同时发生吗?

(5)事件G与事件H能同时发生吗?它们两个事件有什么关系?

活动:学生思考或交流,教师提示点拨,事件与事件的关系要判断准确,教师及时评价学生的答案. 讨论结果:

(1)如果事件C1发生,则一定发生的事件有D1,E,D3,H,反之,如果事件D1,E,D3,H分别成立,能推出事件C1发生的只有D1.

(2)如果事件C2发生或C4发生或C6发生,就意味着事件G发生. (3)如果事件D2与事件H同时发生,就意味着C5事件发生. (4)事件D3与事件F不能同时发生.

(5)事件G与事件H不能同时发生,但必有一个发生. 由此我们得到事件A,B的关系和运算如下:

①如果事件A发生,则事件B一定发生,这时我们说事件B包含事件A(或事件A包含于事件B),记为BA(或AB),不可能事件记为,任何事件都包含不可能事件. ②如果事件A发生,则事件B一定发生,反之也成立,(若BA同时AB),我们说这两个事件相等,即A=B.如C1=D1.

③如果某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与B的并事件(或和事件),记为A∪B或A+B.

④如果某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与B的交事件(或积事件),记为A∩B或AB.

⑤如果A∩B为不可能事件(A∩B=),那么称事件A与事件B互斥,即事件A与事件B在任何一次试验中不会同时发生.

⑥如果A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件,即事件A与事件B在一次试验中有且仅有一个发生. 继续依次提出以下问题:

(1)概率的取值范围是多少? (2)必然事件的概率是多少? (3)不可能事件的概率是多少? (4)互斥事件的概率应怎样计算? (5)对立事件的概率应怎样计算?

活动:学生根据试验的结果,结合自己对各种事件的理解,教师引导学生,根据概率的意义:(1)由于事件的频数总是小于或等于试验的次数,所以,频率在0—1之间,因而概率的取值范围也在0—1之间.(2)必然事件是在试验中一定要发生的事件,所以频率为1,因而概率是1.

(3)不可能事件是在试验中一定不发生的事件,所以频率为0,因而概率是0.

(4)当事件A与事件B互斥时,A∪B发生的频数等于事件A发生的频数与事件B发生的频数之和,互斥事件的概率等于互斥事件分别发生的概率之和. (5)事件A与事件B互为对立事件,A∩B为不可能事件,A∪B为必然事件,则A∪B的频率为1,因而概率是1,由(4)可知事件B的概率是1与事件A发生的概率的差.

讨论结果:

(1)概率的取值范围是0—1之间,即0≤P(A)≤1.

(2)必然事件的概率是1.如在掷骰子试验中,E={出现的点数小于7},因此P(E)=1. (3)不可能事件的概率是0,如在掷骰子试验中,F={出现的点数大于6},因此P(F)=0.

(4)当事件A与事件B互斥时,A∪B发生的频数等于事件A发生的频数与事件B发生的频数之和,互斥事件的概率等于互斥事件分别发生的概率之和,即P(A∪B)=P(A)+P(B),这就是概率的加法公式.也称互斥事件的概率的加法公式.

(5)事件A与事件B互为对立事件,A∩B为不可能事件,A∪B为必然事件,P(A∪B)=1.所以1=P(A)+P(B),P(B)=1-P(A),P(A)=1-P(B).如在掷骰子试验中,事件G={出现的点数为偶数}与H={出现的点数为奇数}互为对立事件,因此P(G)=1-P(H).

上述这些都是概率的性质,利用这些性质可以简化概率的计算,下面我们看它的应用.

(三)应用示例

思路1

例1 一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件? 事件A:命中环数大于7环; 事件B:命中环数为10环;

事件C:命中环数小于6环; 事件D:命中环数为6、7、8、9、10环.

活动:教师指导学生,要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚,互斥事件是指不可能同时发生的两事件,而对立事件是建立在互斥事件的基础上,两个事件中一个不发生,另一个必发生.

解:A与C互斥(不可能同时发生),B与C互斥,C与D互斥,C与D是对立事件(至少一个发生). 点评:判断互斥事件和对立事件,要紧扣定义,搞清互斥事件和对立事件的关系,互斥事件是对立事件的前提.

变式训练

从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件. (1)恰好有1件次品恰好有2件次品; (2)至少有1件次品和全是次品;

(3)至少有1件正品和至少有1件次品; (4)至少有1件次品和全是正品.

解:依据互斥事件的定义,即事件A与事件B在一定试验中不会同时发生知:(1)恰好有1件次品和恰好有2件次品不可能同时发生,因此它们是互斥事件,又因为它们并不是必然事件,所以它们不是对立事件.同理可以判断:(2)中的2个事件不是互斥事件,也不是对立事件.(3)中的2个事件既不是互斥事件也不是对立事件.(4)中的2个事件既互斥又对立.

例2 如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是(事件B)的概率是

1,取到方块41,问: 4(1)取到红色牌(事件C)的概率是多少? (2)取到黑色牌(事件D)的概率是多少?

活动:学生先思考或交流,教师及时指导提示,事件C是事件A与事件B的并,且A与B互斥,因此可用互斥事件的概率和公式求解,事件C与事件D是对立事件,因此P(D)=1-P(C).

解:(1)因为C=A∪B,且A与B不会同时发生,所以事件A与事件B互斥,根据概率的加法公式得P(C)=P(A)+P(B)=

1. 21. 2(2)事件C与事件D互斥,且C∪D为必然事件,因此事件C与事件D是对立事件,P(D)=1-P(C)=

点评:利用概率的加法公式,一定要注意使用条件,千万不可大意. 变式训练

某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21、0.23、0.25、0.28,计算该射手在一次射击中:

(1)射中10环或9环的概率; (2)少于7环的概率.

解:(1)该射手射中10环与射中9环的概率是射中10环的概率与射中9环的概率的和,即为0.21+0.23=0.44.(2)射中不少于7环的概率恰为射中10环、9环、8环、7环的概率的和,即为0.21+0.23+0.25+0.28=0.97,而射中少于7环的事件与射中不少于7环的事件为对立事件,所以射中少于7环的概率为1-0.97=0.03.

思路2

例1 抛掷一骰子,观察掷出的点数,设事件A为“出现奇数点”,B为“出现偶数点”,已知P(A)=

11,P(B)=,求出“出现奇数点或偶数点”的概率? 22活动:学生思考或讨论,教师引导,抛掷骰子,事件“出现奇数点”和“出现偶数点”是彼此互斥的,并且是相互事件,可以运用概率的加法公式求解.

解:记“出现奇数点或偶数点”为事件C,则C=A∪B,因为A、B是互斥事件,所以P(C)=P(A)+P(B)=

11+=1. 22出现奇数点或偶数点的概率为1.

变式训练

抛掷一粒骰子,观察掷出的点数,设事件A为出现奇数,事件B为出现2点,已知P(A)=

11,P(B)=,26求出现奇数点或2点的概率之和.

解:“出现奇数点”的概率是事件A,“出现2点”的概率是事件B,“出现奇数点或2点”的概率之和为P(C)=P(A)+P(B)=

例2 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为黄球的概率是

112+=. 2631,得到黑球或355,得到黄球或绿球的概率也是,试求得到黑球、得到黄球、得到绿球的概率各是多少? 1212活动:学生阅读题目,交流讨论,教师点拨,利用方程的思想及互斥事件、对立事件的概率公式求解.

解:从袋中任取一球,记事件“摸到红球”“摸到黑球”“摸到黄球”“摸到绿球”为A、B、C、D,则有P(B∪C)=P(B)+P(C)=P(B)=

5512;P(C∪D)=P(C)+P(D)=;P(B∪C∪D)=1-P(A)=1=,解得121233111,P(C)=,P(D)=. 4111、、. 41,7即得到黑球、得到黄球、得到绿球的概率分别是

变式训练

已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是从中取出2粒都是白子的概率是

12,现从中任意取出2粒恰好是同一色的概率是多少? 35解:从盒子中任意取出2粒恰好是同一色的概率恰为取2粒白子的概率与2粒黑子的概率的和,即为

11217+. 73535

(四)知能训练

1.下列说法中正确的是( )

A.事件A、B中至少有一个发生的概率一定比A、B中恰有一个发生的概率大 B.事件A、B同时发生的概率一定比事件A、B恰有一个发生的概率小 C.互斥事件一定是对立事件,对立事件不一定是互斥事件 D.互斥事件不一定是对立事件,对立事件一定是互斥事件

答案:D

2.课本练习1—5.

(五)拓展提升

1.从男女学生共有36名的班级中,任意选出2名委员,任何人都有同样的当选机会.如果选得同性委员的概率等于

1,求男女生相差几名? 2x(x1).

3635解:设男生有x名,则女生有36-x名.选得2名委员都是男性的概率为选得2名委员都是女性的概率为

(36x)(35x).

3635以上两种选法是互斥的,又选得同性委员的概率等于

1x(x1)(36x)(35x)1,得+=.解得x=15或2363536352x=21.

即男生有15名,女生有36-15=21名,或男生有21名,女生有36-21=15名. 总之,男女生相差6名.

2.黄种人群中各种血型的人所占的比如下表所示: 血型 该血型的人所占比/% A 28 B 29 AB 8 O 35 已知同种血型的人可以输血,O型血可以输给任一种血型的人,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.小明是B型血,若小明因病需要输血,问: (1)任找一个人,其血可以输给小明的概率是多少? (2)任找一个人,其血不能输给小明的概率是多少?

解:(1)对任一人,其血型为A,B,AB,O型血的事件分别记为A′,B′,C′,D′,它们是互斥的.由已知,有P(A′)=0.28,P(B′)=0.29,P(C′)=0.08,P(D′)=0.35.

因为B,O型血可以输给B型血的人,故“可以输给B型血的人”为事件B′+D′.根据互斥事件的加法公式,有P(B′+D′)=P(B′)+P(D′)=0.29+0.35=0..

(2)由于A,AB型血不能输给B型血的人,故“不能输给B型血的人”为事件A′+C′,且P(A′+C′)=P(A′)+P(C′)=0.28+0.08=0.36.

即任找一人,其血可以输给小明的概率为0.,其血不能输给小明的概率为0.36.

注:第(2)问也可以这样解:因为事件“其血可以输给B型血的人”与事件“其血不能输给B型血的人”是对立事件,故由对立事件的概率公式,有P(B'D')=1-P(B′+D′)=1-0.=0.36.

(六)课堂小结

1.概率的基本性质是学习概率的基础.不可能事件一定不出现,因此其概率为0,必然事件一定发生,因此其概率为1.当事件A与事件B互斥时,A∪B发生的概率等于A发生的概率与B发生的概率的和,从而有公式P(A∪B)=P(A)+P(B);对立事件是指事件A与事件B有且仅有一个发生.

2.在利用概率的性质时,一定要注意互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形:①事件A发生B不发生;②事件B发生事件A不发生,对立事件是互斥事件的特殊情形.

(七)作业

习题3.1A组5,B组1、2.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo0.cn 版权所有 湘ICP备2023017654号-2

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务