22b2+c2-a2b2+c2-71根据余弦定理得cosA===,2bc122则b2+c2=(b+c)-2bc=13.② ①②两式联立可得b+c=5. 19.(1)由an+1=an1111=+2,即-=2, 可得
2an+1an+1anan+1an2又a1=1,即
禳11镲=1,∴数列睚是首项为1,公差为2的等差数列, a1an镲铪页 5第
∴
11. =1+(n-1)?22n-1,即an=2n-1an1骣11-(2)由于bn=anan+1=琪, 琪2桫2n-12n+11骣111111-+-+…+-∴Tn=b1+b2+…+bn=琪 琪2桫3352n-12n+11骣1n=琪1-=. 琪2桫2n+12n+120.证明:(1)连结AC交BD于O,由于CB=CD,
AB=AD,知AC^BD,
∵SC^BD,SCCA=C,
∴BD^平面SAC, 又SAÌ平面SAC, ∴SA^BD.
(2)取AB的中点N,连结MN,DN, ∵M是SA中点,∴MN∥BS, ∴MN∥平面SBC,
∵△ABD是正三角形,∴ND^AB,
∵∠BCD=120°得∠CBD=30°,∴∠ABC=90°,即BC^AB, ∴ND∥BC,∴ND∥平面SBC, ∵MNND=N,
∴平面MND∥平面SBC,又DMÌ平面MND, ∴DM∥平面SBC.
x22x-x221.(1)由f(x)=x得f'(x)=,令f'(x)=0得x=2或x=0.
eex当x变化时,f'(x)与f(x)的变化情况如下表: x (-?,0) - 0 0 (0,2) + 2 0 (2,+?) - f'(x) 页 6第
f(x) 递减 极小值0 递增 极大值4 e2递减 故函数f(x)的极大值为(2)$x1,x2?(0,?4,极小值为0. e212),使得g(x)£f(x),等价于当x?(0,?)时,
g(x)min£f(x)max,
ax-a由g(x)=lnx+得g'(x)=2,
xx当xÎ(0,a)时,g'(x)<0,g(x)递减,当x?(a,?所以当x>0时,g(x)min=g(a)=1+lna. 由(1)知f(x)max-144e2=f(2)=2,解1+lna?2得a£e.
ee4)时,g'(x)>0,g(x)递增,
纟42-1eú故a的取值范围是çç0,eú. 棼22.(1)由一条渐近线与x轴所成的夹角为30°知
b3,即a2=3b2, =tan30°=a3又双曲线中c=22,所以a2+b2=8,解得a2=6,b2=2, x2y2所以椭圆C的方程为+=1.
62(2)由(1)知F(2,0),设直线AB的方程为x=ty+2,A(x1,y1),B(x2,y2), ìx2y2ï+=1ï联立í6得t2+3y2+4ty-2=0, 2ïïx=ty+2î()ì-4t①ïy1+y2=2ït+3所以í
-2ï②ïy1y2=2t+3î由题意S1=2S2知y1=-2y2 ③
1
由①②③得t2=.
5
15将t2=代入②,得y1y2=-,
58又x1x2=(ty1+2)(ty2+2)=t2y1y2+2t(y1+y2)+4=所以OA?OB页
27, 8x1x2+y1y2=27511-=. 8847第
页8第