Analysisofwatersorptionandthermalconductivityofexpandedpolystyreneinsulationmaterials
´kosLakatosandFerencKalma´rA
BuildingServ.Eng.Res.Technol.
34(4)407–416
!TheCharteredInstitutionofBuildingServicesEngineers2012
DOI:10.1177/0143624412462043bse.sagepub.com
Abstract
Thisarticlepresentstheresultsofwatersorptionpropertiesinvestigationandthermalconductivitymeasurementsofexpandedpolystyrenethermalinsulationmaterialswithdifferentmassdensities.ThesorptionbehaviouroftheexpandedpolystyrenematerialswasachievedinaClimacell111typeclimaticchamber,afterdryinginaVenticell111typedesiccatorapparatus.Therelativehumidityvariedfrom25%to90%at293Kfor240min.ThethermalconductivityofeachsamplewasdeterminedusingaHolometrix2000(HLS)heatflowmeter.Inthisarticle,thesorptionisotherms,sorptionkinetics,thermalconductiv-itiesandthepredictionofchangesinfunctionofwatercontentoffourpureexpandedpolystyrene(30,100,150,200andgrey)slabswithdifferentdensities(14,17.5,23.7and27.5kg/m3)andoneexpandedpolystyrenemixedwithgraphitearegiven(greyexpandedpolystyrene).
Practicalapplication:Thethermalconductivityaswellasthemoisturecontentarekeythermaltrans-portpropertiesofbuildingmaterials.Theroleofinsulatingmaterialsinthebuildingenergyandmoisturebalanceismoresignificantwhencomparedwiththeothermaterialsofthebuildingstructures.Thelaboratorymeasurementsofthesevaluesoftheinsulatingmaterialsareveryimportanteitherforthemanufacturersorthecontractors.Theavailablebibliographicdataforthesematerialsarestronglyincom-pleteandsomewhereoutofdate.
Keywords
Polystyrene,thermalconductivity,sorptionisotherm
Introduction
IntheEuropeanUnion(EU),buildingsaccountfora20–40%ofthetotalfinalenergyconsump-tion.1Becausenooneofthememberstatesisindependentfromenergypointofview,inthebuildingsector,themaingoalsaretheincreaseofenergyefficiencyandutilizationofrenewableenergysources.Thisispartofthe20-20-20EU
DepartmentofBuildingServicesandBuildingEngineering,FacultyofEngineering,UniversityofDebrecen,Debrecen,Hungary
Correspondingauthor:
´kosLakatos,DepartmentofBuildingServicesandBuildingA
Engineering,FacultyofEngineering,UniversityofDebrecen,H-4028Debrecen,Hungary.Email:alakatos@eng.unideb.hu
408JournalofBuildingServicesEngineeringResearch&Technology34(4)
target.Tofulfilthefixedgoals,severalDirectiveswereprepared.OneoftheDirectivesisthe2002/91/ECDirectivedealingwithenergyperformanceofbuildings.2ThisDirectivein2010wasrevisedandadoptedas2010/31/EUDirective.3AccordingtothisDirectiveasof31December2020,newbuild-ingsintheEUwillhavetoconsume‘nearlyzero’energyandtheusedenergywillbe‘toaverylargeextent’fromrenewablesources.Publicauthoritiesthatownoroccupyanewbuildingshouldsetanexamplebybuilding,buyingorrentingsuch‘nearlyzeroenergybuilding’asof31December2018.Inthiscon-text,properinsulationofbuildingsenvelopeisoneoftheleadingchallengesofthebuildingindustry.TheEuropeanmarketofinsulationmaterialsischaracterizedbythedominationoftwogroupsofproducts:inorganicfibrousmaterialsandorganicfoamymaterials.4InmostEuropeancountries,becauseofwellela-boratedtechnologies,polystyrene(PS)istheleadingmaterialusedforadditionalinsulationofexistingbuildings.Becauseofrelativelyhighinvestmentcostsandspecialtechnologyneeded,mineralwoolisusedespeciallyatnewbuild-ings.Polyurethane(PU)isusedmostlyatpre-fabricatedwallpanelsandroofs.Testsrelatedtoitsageingweredoneindifferentresearchinstitutions.5Theanalysisofthermalpropertiesofcommoninsulationmaterialswasdoneandpresentedindifferentpapers.6Thepay-backtimeandtheoptimumthicknessofusedinsu-lationmaterialwasanalysedbydifferentauthors.Theenergyanalysisofoptimalwallinsulationthicknesswasdone7andacorrel-ationbetweenthermalconductivityandthethicknessofselectedinsulationmaterialsforbuildingwallshasbeenanalysed.8Therearecaseswhentheoptimizationisbasedonthelifecyclecostanalysis.Someauthorsuseddif-ferentfuelsasprimaryenergycarriertoobtaintheoptimalthickness,9otherspreparedgeneral-izedchartsforselectingtheoptimuminsulationthicknessasafunctionofdegreedaysandwallthermalresistance.10Thermalpropertiesofmostusedmaterialsareveryimportanttobe
knowntoperformcorrectcalculationsrelatedtoheatlossthroughbuildingenvelope.ThethermaltransportinPSandPUfoaminsula-tionswithspecialemphasisontheradiativetransferiswelldescribed.11TheeffectofmolecularweightdistributiononthephysicalpropertiesofPSwasanalysedfewdecadesago,butbecauseofitsincidence,thephysicalpropertiesofPSwereanalysed,especiallytakingintoaccounttheageingwhichcanleadtovariationintimeoftheseproperties.12,13ThepropertiesofPS/graphitenanocompositeswereanalysedandtheresearchshowsthatduetotheinterfacialinteractionbetweenthegraphitenanolayersandthepolymer,thecompositesexhibithigherglasstransitiontemperatureandhigherthermalstabilitywhencomparedtoPS.14BecausetheflammabilityproblemsofPS,somestudiesrelatingtoflammabilityofPS-layeredsilicate(clay)nanocompositeswerecar-riedout.15Nevertheless,inordertodeterminecorrectlytheheatlossthroughabuildingelem-ent,theheatconductivityvariationofinsula-tionmaterialshouldbeknownindifferentenvironmentalconditions.Humiditycontenthasanimportantinfluenceonthermalconduct-ivityofPSwhichshouldbetakenintoaccountwhenbuildingsareinsulatedwiththismaterial.Hungarianstandard(MSZ-04-140-2:1991,powerengineeringdimensioningcalculusesofbuildingsandbuildingenvelopestructures)containssomediagramsrelatedtovapourabsorptionofPSbutourresearchdemonstratesthatthesediagramsshouldnotbeusedhence-forthbecausethereareimportantdifferencesbetweenstandardandmeasuredvalues.Thisstandardprovidesacomprehensivedescriptionontheconservationofthebuildingstructures,describesthehealthcareofthepeoplelivingandworkinginthebuildings,furthermoreregularizesthecalculationsandsizingmethodsofthethermalcategoriesofbuildings.
Materialandmethods
Boththesorptionandthethermalconductivitymeasurementswerecarriedoutafterdryingthe
LakatosandKalma´rsamplesinaVenticelldryinginstrument.With
thisdevice,materialscanbedriedsettingdiffer-entairtemperatures(upto523K).Itworkswithhotaircirculationusinganinbuiltventilator.16Forthesorptionmeasurements,threesampleswith8Â8Â5cm3geometrieswerepreparedfromtheoriginalpiecestoperformthemeasure-mentsonthreespecimensfromthesamemater-ial.Theresultswereobtainedbyaveragingofthreemeasurements.BeforetreatingthesamplesintheClimacellclimaticchamber,samplesweredriedtochangelessweightat343Kundernormalatmosphericpressure(105Pa)atalltimes.ThistemperaturewaschosenbecauseitisfairlyunderthemeltingpointofthePS(about373K)andduringthedehydratingpro-cessatthistemperature,thematerialdoesnotsufferlossesinitsphysicalandchemicalproper-ties.Todeterminethesorptioncurves(moisturecontentofmaterialinfunctionofrelativehumidity(RH%)ofairat293K),thesampleswerekeptintheCLCchamberunder25%,50%,63%,76%and90%RHfor240min.Thewater/moisturecontent(!(%))ofasolidmaterialcanbecalculatedfromequation(1)
!¼
mwÀmd
mð1Þ
d
wheremdandmwarethemassofthedriedandthedampedsamples,respectively.
FormeasuringthethermalconductivityofeachPSsamples,Lambda2000heatflowmeter(HFM)wasused.ThisequipmentisdesignedtodeterminethethermalconductivityofinsulationmaterialsinaccordancewithstandardASTMC518andISO8301protocols.Asamplewith30Â30Â5cm3geometryisplacedinthetestsec-tionbetweentwoplateswhicharemaintainedatdifferenttemperatures(T1¼285KandT2¼295K,withTmean¼290K)duringthetest.Afterachievingthermalequilibriumandestab-lishingauniformtemperaturegradientthrough-outthesample,thermalconductivityisdetermined.Todeterminethethermalconduct-ivityofasample,threeindependent
409
measurementswerecarriedout.Thethermalcon-ductivityofanalysedmaterialwasthemeanvalueofthethreemeasuredresults.
ForunderstandingthemeasurementmethodofHolometrixLambdaequipment,thefollow-ingcommentsareindispensable.Themagnitudeoftheheatflow(q)dependsonseveralfactors:a.thermalconductivityofsamples(¼k);b.thethicknessofthespecimen(Áx);
c.thetemperaturedifferenceacrossthespeci-men(ÁT);and
d.areathroughwhichtheheatflows(A).TheFourierheatflowequation(equation(2))givestherelationshipbetweentheseparam-eterswhenthetestsectionreachesthermalequilibrium
q¼AÁTÁx
ð2Þ
Oneortwoheatflowtransducersmeasuretheheatflowthroughthespecimen.Thesignalofaheatflowtransducer(involts(V))ispropor-tionaltotheheatflowthroughthetransducer.IntheLambda2000HFMinstrument,theareaoftheheatflowtransducerrepresentstheareathroughwhichtheheatconductionisrealizedanditisthesameforallspecimens;therefore,theheatflowwillbe(equation(3))
q¼NV
ð3Þ
whereNisthecalibrationfactorthatrelatesthevoltagesignaloftheheatflowtransducertotheheatfluxthroughthespecimen.Forcalibrationofapparatus,afibrousglassboardstandardsamplewith¼0.05W/mKwasused.Usingequations(2)and(3),theheatconductivitycanbedetermined(equation(4))
¼k¼N
VÁxÁT
ð4Þ
410JournalofBuildingServicesEngineeringResearch&Technology34(4)
Table1.ThemoisturecontentofthedifferentPSsamplesafterdampening.
Watersorptionafter6hat293K
Density(kg/m3)ColourcodeRH(%)90766350250
14Blue
17.5Yellow
23.7Black1
27.5Black2
13.62Grey
Moisturecontent(%)1.050.940.920.10.880
0.980.860.850.840.7930
0.870.670.650.620.60
0.690.570.540.530.50
1.161.1161.091.051.010
PS:polystyrene;RH:relativehumidity.
Thetermreproducibilityindicatesthevari-ationofthetestresultsofonespecimenfromtesttotest.Factorssuchashowwellthespeci-menmakescontactwiththeplatesandthetem-peraturestabilityaffectthereproducibility.Ifthethermalresistanceofthetestspecimeniscommensurablewiththereferencestandard’sÆ5%orbetteraccuracycanbeobtained.
Resultsanddiscussion
SorptionisothermsaswellasthermalpropertiesofexpandedPS(EPS)slabswereinvestigated.Theresultsofmeasurementsaredividedintotwogroups.Atfirst,thesorptionbehaviourandwateruptakingpropertiesareintroduceddependingonthematerialdensity.Thereafter,thechangeofthethermalconductivitywithincreasingmassdensitywillbereported.TheresultsgrouparecomparedtorelevantHungarian(MSZ-04-140-2:1991)andinter-national(EN13163)standardseither.
Sorptionversusmassdensity
FoammaterialsmadeofPScontainconsider-ablequantityofairclosedintocells.Thenumberandsizeofcellsareincreasingatlowermaterialdensities.Thesebubblescanbefilledupwithwatersothatsomethermalpropertiesof
thematerialcansufferinadequatechanges.Thisisthemainreasonoftheimportanceofthesorptionmeasurementsofmaterials.InTable1,theresultsofthesorptionmeasure-mentscarriedoutat293Kfor6harepresented.Figure1(a)indicatestheso-calledsorptioniso-thermcurves,whichwerecreatedfromthedataofTable1.TheincreasingmoisturecontentdependingontheincreasingRHcanbeseenforeachEPSsample.Theblue(EPS30),yellow(EPS100),black1(EPS150)andblack2(EPS200)labelsarethecoloursignsofpureEPSmaterialsandbelongstothe14,17.5,23.7and27.5kg/m3densities,respectively.Furthermore,thegreylabelwith13.62kg/m3massdensitybelongstothemixedEPS–graphitesamples.InFigure1(a),therisingmoisturecon-tentdependingonthedensitycanbeseen.ComparedtoFigure1(b)(takenfromHungarianstandard,MSZ-04-140-2:1991),wherethesorptiondataoftheEPSsampleswithdifferentdensitiesareshown,itcanbeobservedthatthereareimportantdifferences.InFigure1(a),from0%to30%,agreatjumpinthemoisturecurvescanbeseenbecauseoftheinitialmonoandmultilayerabsorptionpro-cesses,buttheseriesdonotshowremarkablechangesbetween50%and80%.Over80%RH,thegrowthinthecurvesisobservable.Atthispoint,thecapillarycondensationtakes
´rLakatosandKalma411
(a)
1,2
(b)
Moisture content (%)Blue
YellowBlack1Black2Grey
2
Moisture content (%)0,61
16 kg/m25 kg/m
3
33
0,0049 kg/m
04080
04080
Relative humidity (%)Relative humidity (%)
Figure1.Thesorptionisothermcurvescreatedfromthe(a)measurementresults,forallEPSsamplesand(b)Hungarianstandard,forEPSsamples,withdifferentdensities.EPS:expandedpolystyrene.
place,incontrasttoFigure1(b),wherethewatercontentisrisingcontinuously.ThemoisturecontentvalueisdependentonthedensityofEPSslabs:thelowerthedensityisthehigheristhemoisturecontent.Suchdependencycanbefoundinotherpapers.17–20InFigure2(a)and(b),themoisturecontentsatgivenrelativehumidities(25–90%)areillustratedinthefunc-tionofmassdensities.Theobtainedvaluesareinaccordancewiththeresultspresentedinpre-viousworks,18,21–24namely,thatthewatercon-tentisincreasingifthedensityoftheEPSisdecreasing.Inthesereferences,thewaterabsorptionmeasurementswerecarriedoutbyimmersionsforseveraldays.Ourexperimentsweredoneusingtheabovepresentedclimaticchambermethod(waterabsorptionfromair).Figure2(a)belongstothemeasurementresults,whileFigure2(b)istakenfromtheHungarianstandard04140:2-1991.Themeasurementresultsshownearlylineardecreaseofthewatercontentwiththedensity.FromthegraphinFigure2(b),takenfromtheHungarianstand-ard,suchdependencecannotbeseen.Toevalu-atethemassdensitydependenceofthemoisturecontentatanoptionalRHoftheair,thelog–logplotofFigure2(a)wascreated(Figure3).Theslopeoftheeachlog(moisturecontent)–log(density)functiongivesthek-value,thedensitydependenceexponent.Thesevaluescanbe
foundinTable2,wherethepartialpressuresareindicatedinsteadoftherelativehumidities.Thesek-valuesarenegatives,representingthefallofthedensitydependence.Thedecreasingexponentsareplottedinfunctionofpartialpres-sure(Figure4).AfitofasimpleexponentialfunctionwasachievedonthedataofFigure4.Thisfittingprocedureresultedinasimpleequa-tionbetweenk(thedecreaseofthemoisturecon-tentinfunctionofdensity)andthepartialpressure(Pp,calculatedfromRH),withA1asaconstant(equation(5))
Pp
k¼ÀA1exp
3
ð5Þ
Furthermore,thesek-valuesdenotethedens-itydependenceofthemoistureabsorptioncap-ability.ForhighRH,thedependenceofthemoisturecontentfromthedensityisshowingsquareroot,forlowRH%thisdependencyisnearlylinear.
Thermalconductivityversusmassdensity
Figure5representsthecomparisonofthermalconductivitymeasurementresultscarriedoutwithHLSequipment,withthevaluesofthemanufacturerandtheupdatedHungarian
412JournalofBuildingServicesEngineeringResearch&Technology34(4)
(a)
Moisture content (%)0,9
(b)
Moisture content (%)2,22,01,81,61,41,21,00,80,60,40,2
25%50%63%76%90%
0,6
25%50%63%76%90%
18
24
30
122040
Density (kg/m3)Density (kg/m3)
Figure2.(a)ThemeasuredmoisturecontentsatthegivenRH%asafunctionofmassdensitiesand(b)themoisturecontentstakenfromtheHungarianstandardatthegivenRH%asafunctionofmassdensities.RH:relativehumidity.
0,0Lg of Moisture ContentTable2.Thedensitydependenceexpo-nents(k)infunctionofpartialpressure.k
lg90lg76lg63lg50lg25
–0,1
Partialpressureat293K(mbar)5.911.814.86817.93621.24
–0,2
–0,3
1,2
1.41,3
Lg of Density
À0.84À0.81À0.8À0.75À0.56
Figure3.Thelogarithmofmeasuredmoisturecon-tentsatthegivenRH%asafunctionofthelogarithmofmassdensities.
RH:relativehumidity.
(MSZ-04-140-2:1991)andinternational(MSZEN13163)standards,furthermorewiththeresultspresentedinaBuildingPhysicsHandbook.25Oneconspicuousdifferencecanbeobserved.Thethermalconductivitiesaredecreasingwithincreasingdensity,butthevaluesfromtheHungarianstandardaregoingagainstwiththeothers(seethedashedlineonFigure5).ThethermalconductanceoftheEPSslabsisdefinedbyfourphenomena:the
conductionthroughthewallsofthecells,theconductanceandconvectionoftheairlockedinthecells,furthermoretheradiationinsidetheslabs.Themainfactorsforthechangeofthethermalconductivityvaluearetheconduc-tionofthesolidpartandtheroleoftheair.Withdecreasingdensity,thenumberandthesizeoftheairporesareincreasing.Theconvec-tionoftheairisamplified,however,theconduc-tionofthewallsarereducedbecausethedensityrateofthesolidconstituentisdecreased.IfthedensityofEPSslabsisincreasing,thesizeandnumberoftheairbubblesaredecreasing,sotheeffectoftheconductanceandconvectionofairisnearlynegligiblecomparedtothesolidconduct-ance.Wesupposethatthereisacriticalnumber
LakatosandKalma´r0,9
s0,8
tnenopx0,7
e citeData
niK0,6
ExpDec 1 of A
0,5
71421
Partial pressure (mbar)
Figure4.TheslopesofthelinesrepresentedinFigure3,asafunctionofpartialpressure.
)KMeasured (W/mK)mLambda cp/W0,049
Lambda oszt( Lambda 1991HSytLambda 13163en
ivitcu0,042
dnoc lamr0,035
ehT121824
Density (kg/m3)
Figure5.Thethermalconductivityasafunctionofmassdensity.
and/oracriticalsizeoftheporeswheretheheatconductivityversusdensityfunctionturnsback.Thisiscausedbythehigherrateofthesolidconstituentalongwiththeraisingofthecon-ductanceofthesolidcells.So,itshouldbeaminimum(greaterthanzero)valueofthether-malconductivityoftheEPSslabs.Ourresults,namelythatthedecreasingdensityincreasesthethermalconductivity,agreewiththeconclusionsofotherresearcherspublishedinpreviousworks.26–29413
Thermalconductivityversuswatercontent
Asmentionedabove,theairasafillingofthecellshasagreatinfluenceontheconductivityoftheEPSmaterials.Thermalconductivitycanrisesignificantlyifwaterinfiltratesintothecellsanddisplacesthegasmolecules.Usingthedatapre-sentedinTable1andasimpleequation(equa-tion(6))takenfromIvan,29thermalconductivities(wet)arecalculatedinfunctionofwatercontent(!).Inequation(6),0istheinitialvalueofthermalconductivity(afterdrying)andz¼2forplasticfoams.TheseroughestimationsarecollectedinTable3
!z
wet¼0Â1þ100ð6Þ
Theexpectedthermalconductivitiesaredepictedinfunctionofwatercontent,aswellasthelinearfitanalysisofthesefunctionsareshowninFigure6.Thevalueofisincreasingwithincreasingmoisturecontent(!)asequation(6)requires,andtheslopeofthefitlinesareincreasingwithdecreasingdensityasbeforeexplained.InFigure7,therelativechange‘C’ofthecalculatedthermalconductivityvaluesareshowninfunctionofpartialpressurecalcu-latedfromtheRH.TheC(percentchangeofthermalconductivity)valuesaregivenfromthecorrelationofwetto0usingequation(7)
C¼
wetÀ0
Â100ð7Þ
0
Fittingthe(C$Pp)curvesinFigure7withmathematicalfunctions,anexponentialfunctionisderivedforthepureEPSsamples(blue,yellow,black1andblack2);furthermore,asimplelinearfit(equation(8))forthecarbo-natedEPSgivesR2¼99%match
C¼A2ÂPp
ð8Þ
ThedefinedexponentialfunctiondeterminedonthepureEPSsamples
C¼AÀP3Âexpp
3
ð9Þ
414JournalofBuildingServicesEngineeringResearch&Technology34(4)
Table3.Thecalculatedthermalconductivitiesbasedonthemoisturecontent.Blue02550637690Yellow02550637690Grey02550637690
!(%)00.880.10.920.9361.046!(%)00.7930.840.850.8610.981!(%)01.011.051.091.1161.16
wet(W/mK)0.0440.0447740.0447840.044810.0448240.04492wet(W/mK)0.0370.0375870.0376220.0376290.0376370.037726wet(W/mK)0.0310.0316260.0316510.0316760.0316920.031719
Black102550637690Black202550637690
!(%)00.60.6180.90.670.87!(%)00.50.5250.5350.5680.6885
wet(W/mK)0.0360.03320.03450.03670.03820.036626wet(W/mK)0.0350.035350.0353680.0353750.0353980.035482
2,4
Percental change oftherma; conductivity (%)c(%)=0,02*Pp+1,
2,22,01,81,61,41,21,0
0
5
10
15
20
blue%yellow%black1%black2%grey%
0,045
Thermal conductivity (W/mK)λblue=0,00088*ω+0,044
0,040
λyellow=0,00074*ω+0,037
0,035
BlueBlack1YellowBlack2Grey
c(%)=6*10–4*exp(–Pp/3)+K
λblack1=0,00072*ω+0,036
λblack2=0,0007*ω+0,035
λgrey=0,00062*ω+0,031
0,030
0,0
Partial pressure (mbar)
0,6
1,2
Moisture content (%)
Figure6.Thecalculatedthermalconductivitiesasafunctionofmoisturecontent.
Figure7.ThedependenceofthepercentchangeofthethermalconductivityofeachEPSsamplefromthepartialpressure.
EPS:expandedpolystyrene.
LakatosandKalma´rwhereA2andA3areconstants.Equation(9)is
similartoequation(3)representingthepartialpressure(moisturecontent)dependenceofthewatersorptioncapability,sothatthethermalconductivitychange.
Conclusions
Nowadays,theproperuseofinsulationisbecom-ingmoreimportantthanever.Therearemanydifferentwaystoinsulatebuildingswithmater-ials.Thedeterminationofthepropertiesoftheinsulationmaterialsaswellasthevariationofpropertiesintimedependingonvariousexternaleffectsisverysignificant.Inthisarticle,acompre-hensivedescriptionofthesorptionandthermalbehaviourofEPSinsulatingsampleswithdiffer-entdensitiesarepresented.Thesorptionmeasure-mentsshownthatthePSsamples,havinglowdensities,canabsorbimportantquantityofwaterfromtheair.Theeffectsofabsorbedwateraredescribed;furthermore,thethermalconductivityvariationdependingondensityisshown.Somethermalconductivityvalueswerecalculatedbasedonthewatercontentandtheinfluenceofthepartialpressurewasdetermined.Themeasurableamountoftheadsorbedwatercanincreasethethermalconductivityoftheinsu-lationmaterials,sothatcanreducethethermalefficiencyofbuildingsandraisestheU-value.Furthermore,ourmeasurementsprovedthatthedensityshouldbethemainparameterfordefiningthephysicalpropertiesofthePSsamples.Acknowledgements
TheauthorsacknowledgethesupportofCellplast
PlasticLtd(H-4200,Hajduszoboszlo
,Szovatistr3/b)forensuringthePSspecimens.Thisstudyissup-portedbyandTA
TA
MOP4.2.1/B-09/1/KONV-2010-0007MOP4.2.4.A/1-11-1-2012-0001projects.Theprojectsareco-financedbytheEUandtheEuropeanSocialFund.
References
1.Pe
rez-LombardL,OrtizJandPoutCA.Reviewonbuild-ingsenergyconsumptioninformation.EnergyBuild2008;40:394–398.
415
2.Directive2002/91/ECoftheEuropeanParliamentandoftheCouncilof16December2002ontheenergyper-formanceofbuildings.OfficialJournaloftheEuropeanCommunities,L1/65,4January2003.
3.Directive2010/31/EUoftheEuropeanParliamentandoftheCouncilof19May2010ontheenergyperform-anceofbuildings.OfficialJournaloftheEuropeanUnion,L153/13,18June2010.
4.PapadopoulosAM.Stateoftheartinthermalinsulationmaterialsandaimsforfuturedevelopments.EnergyBuild2005;37(1):77–86.
5.KumaranMKandBombergMT.Thermalperformanceofsprayedpolyurethanefoaminsulationwithalterna-tiveblowingagents.JBuildPhys2006;14(1):43–57.6.Al-HomoudMS.Performancecharacteristicsandprac-ticalapplicationsofcommonbuildingthermalinsula-tionmaterials.BuildEnviron2005;40(3):353–366.
7.Kalma
rF.Energyanalysisofbuildingthermalinsula-tion.InProceedingsofthe11thconferenceforbuildingphysics,Dresden,Deutschland,26–30September2002.pp.103–112.
8.MahliaaTMI,TaufiqaBNandMasjukiaHH.Correlationbetweenthermalconductivityandthethick-nessofselectedinsulationmaterialsforbuildingwall.EnergyBuild2006;39(2):182–187.9.BolatturkA.DeterminationofoptimuminsulationthicknessforbuildingwallswithrespecttovariousfuelsandclimatezonesinTurkey.ApplThermEng2006;26(11–12):301–1309.
HasanA.Optimizinginsulationthicknessforbuildings
usinglifecyclecost.ApplEnergy2006;63(2):115–124.KuhnJ,EbertH-P,Arduini-SchusterMC,etal.
Thermaltransportinpolystyreneandpolyurethanefoaminsulations.IntJHeatMassTransfer2006;35(7):1795–1801.
HourstonDJ,SongM,HammicheA,etal.
Modulateddifferentialscanningcalorimetry:2Studiesofphysicalageinginpolystyrene.Polymer1996;37(2):243–247.
McCormickHW,BrowerFMandKinL.Theeffectof
molecularweightdistributiononthephysicalpropertiesofpolystyrene.JPolymSci1959;39(135):87–100.
XiaoM,SunL,LiuJ,etal.Synthesisandpropertiesof
polystyrene/graphitenanocomposites.Polymer2006;43(8):2245–2248.
MorganAB,RichardHHarris,KashiwagiT,etal.
Flammabilityofpolystyrenelayeredsilicate(clay)nano-composites:carbonaceouscharformation.FireMater2002;26(6):247–253.
LakatosA.Methodforthedeterminationofsorption
isothermsofmaterialsdemonstratedthroughsoilsam-ples.IntRevApplSciEng2011;2(2):117–121.
SadauskieneJ,BliudziusR,RamanauskasJ,etal.
Analysisofdistributionofpropertiesofexpandedpoly-styreneinproductionandtheirchangesinexploitationconditions.MaterSci2009;15(4).ISSN1392–1320.
10.11.12.13.14.15.16.17.416JournalofBuildingServicesEngineeringResearch&Technology34(4)
18.GnipIY,KersulisV,VejelisS,etal.Waterabsorption
ofexpandedpolystyreneboards.PolymTest2006;25:635–1.19.Ve_jelisSandVaitkusS.Investigationofwaterabsorp-tionbyexpandedpolystyreneslabs.MaterSci(Medzˇia-gotyra)2006;12(2):134–137.
20.BabuDS,BabuKGandTiong-HuanW.Effectofpoly-styreneaggregatesizeonstrengthandmoisturemigra-tioncharacteristicsoflightweight.CemConcrCompos2006;28(6):520–527.
21.DuskovM.MaterialsresearchonEPS20andEPS15
underrepresentativeconditionsinpavementstructures.GeotextGeomembr1997;15:147–181.
22.DementyevAGandTarakanovOG.Thestructureand
propertiesoffoamplastics(Ctpyktypancbo{ctbafehof-jactob).Chemistry,Moscow,1983,p.172(inRussian).23.PavlovVA.Expandedpolystyrene(Pehofojnctnpoj).
Chemistry,Moscow,1973,p.240(inRussian).24.GnipI,KersulisVandVe_jelisS.Isothermsofwater
vaporsorptionbylightinorganicandpolymerheat-insulatingmaterials.JEngPhysThermophys2006;1:40–47.
25.ZsuzsannaFandMiklosO.E
´pu¨letszigetele´sike´ziko¨nyvII.Budapest:VerlagDashofer,2005.26.MihlayanlarE,DilmacSandGunerA.Analysisofthe
effectofproductionprocessparametersanddensityofexpandedpolystyreneinsulationboardsonmechanicalpropertiesandthermalconductivity.MaterDesign2008;29:344–352.
27.YucelKT,BasyigitCandOzelC.Thermalinsulation
propertiesofexpandedpolystyreneasconstructionandinsulatingmaterials.FacultyofArchitecturalandEngineering,SuleymanDemirelUniversity,Isparta,Turkey,2003.http://zenonpanel.com.mk/al/wp-con-tent/uplaods/2009/06/Thermal-Insulation-properties.PDF(accessed28November2011).
28.MarJD,LitovskyEandKleimanJ.Modelinganddata-basedevelopmentofconductiveandapparentthermalconductivityofmoistinsulationmaterials.JBuildPhys2008;32(1):9–31.
29.IvanF.E´pu¨letfizikake´ziko¨nyv(Handbookofbuilding
physics).Budapest:Mu00
szakiKonyvkiado
,1985.CopyrightofBuildingServicesEngineeringResearch&TechnologyisthepropertyofSagePublications,Ltd.anditscontentmaynotbecopiedoremailedtomultiplesitesorpostedtoalistservwithoutthecopyrightholder'sexpresswrittenpermission.However,usersmayprint,download,oremailarticlesforindividualuse.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo0.cn 版权所有 湘ICP备2023017654号-2
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务