RangeEstimationbyOpticalDifferentiation
HanyFarid
PerceptualScienceGroup
DepartmentofBrainandCognitiveSciencesMassachusettsInstituteofTechnology
Cambridge,MA02139
farid@psyche.mit.edu
EeroP.Simoncelli
CenterforNeuralScience,andCourantInst.ofMathematicalSciences
NewYorkUniversityNewYork,NY10003-6603
eero.simoncelli@nyu.edu
Abstract
Wedescribeanovelformulationoftherangerecoveryproblembasedoncomputationofthedifferen-tialvariationinimageintensitieswithrespecttochangesincameraposition.Thismethodusesasinglestationarycameraandapairofcalibratedopticalmaskstodirectlymeasurethisdifferentialquantity.Wealsodescribeavariantbasedonchangesinaperturesize.Thesubsequentcomputationoftherangeimageinvolvessimplearithmeticoperations,andissuitableforreal-timeimplementation.Wepresentthetheoryofthistechniqueandshowresultsfromaprototypecamerawhichwehaveconstructed.
1
1Introduction
Visualimagesareformedviatheprojectionoflightfromthethree-dimensionalworldontoatwo-dimensionalsensor.Inanidealizedpinholecamera,allpointslyingonaraypassingthroughthepinholewillbeprojectedontothesameimageposition.Thus,informationaboutthedistancetoobjectsinthescene(i.e.,range)islost.Rangeinformationcanberecoveredbymeasuringthechangeinappearanceoftheworldresultingfromachangeinviewingposition(i.e.,parallax).Traditionally,thisisaccomplishedviasimultaneousmeasurementswithtwocamerasatdifferentpositions(binocularstereo),orviasequentialmeasurementscollectedfromamovingcamera(structurefrommotion).
Therecoveryofrangeintheseapproachesfrequentlyreliesontheassumptionofbrightnesscon-stancy[1]:thebrightnessoftheimageofapointintheworldisconstantwhenseenfromdifferentviewpoints.Considertheformulationofthisassumptioninonedimension(theextensiontotwodimensionsisstraightforward).Letsystem.Thevariableaxis).Thevariable
;
describetheintensityfunction,asmeasuredthroughapinholecamera
correspondstothepinholeposition(alonganaxisperpendiculartotheoptical
parameterizesthepositiononthesensor.ThisconfigurationisillustratedinFigure1.
Accordingtotheassumption,theintensityfunction
;
isoftheform:
;
0
0
2
dZI(x) = f(x;0)x=0V=0f(x;v)x=0x=vd/ZVV=vFigure1:Geometryforabinocularstereosystemwithpinholecameras.Thevariableparameterizesthepositionofthecamerapinholes.Accordingtothebrightnessconstancyconstraint,theintensityofapointintheworld,asrecordedbythetwopinholecameras,shouldbethesame.
(3)
Combiningthesetwodifferentialmeasurementsgives:
2OpticalDifferentiation
Wenowshowadirectmethodforthemeasurementoftherequiredderivatives(Equation(4))fromasinglestationarycameraandapairofopticalattenuationmasks.Conceptually,thisismadepossiblebyreplacingthepinholecameramodelwithamorerealistic“thinlens”model,inwhichthecameracollectslightfromarangeofviewpoints.Thisviewpointinformationislostoncethelightisimagedonthesensorplane.Nonetheless,atthefrontofthelens,theinformationisavailable.Itispreciselythisinformationthatweexploit.
Consideraworldconsistingofasinglepointlightsourceandalens-basedimagingsystemwithavariable-opacityopticalmask,
,placeddirectlyinfrontofthelens(leftside,Figure2).Thelight
strikingthelensisattenuatedbythevalueoftheopticalmaskfunctionatthatparticularspatiallocation(weassumethatthevaluesofsuchamaskfunctionarerealnumbersintherange[0,1],andthattheopticaltransferfunctionoftheimagingsystemisconstant).Withsuchaconfiguration,theimageofthepointsourcewillbeascaledanddilatedversionoftheopticalmaskfunction:
1
(5)
asillustratedinFigure2.Thescalefactor,,isamonotonicfunctionofthedistancetothepointsource,,
andiseasilyderivedfromtheimaginggeometryandthelensequation:
1
(6)
where
isthedistancebetweenlensandsensor,and
isthefocallengthofthelens.
2.1OpticalViewpointDifferentiation
InthesystemshownontheleftsideofFigure2,theeffectiveviewpointmaybealteredbytranslatingthemask,whileleavingthelensandsensorstationary.Forexample,consideramaskwithasinglepinhole;differentviewsoftheworldareobtainedbyslidingthepinholeacrossthefrontofthelens.Thegeneralizedimageintensityfunctionforamaskcenteredatposition
;
1
iswrittenas:
(7)
assumingthatthenon-zeroportionofthemaskdoesnotextendpasttheedgeofthelens.
4
Point Light SourceZOptical MaskLensM(u)M’(u)SensorI(x) = 1/α M(x/α)-I (x) = 1/α M’(x/α) vd/dx2I (x) = 1/α M’(x/α)xαFigure2:Illustrationofdirectdifferentialrangedeterminationforasinglepointsource.Imagesofapointlight
anditsderivative,sourceareformedusingtwodifferentopticalmasks,correspondingtothefunction
.Ineachcase,theimageformedisascaledanddilatedcopyofthemaskfunction(byafactor).
producesanimagethatisComputingthespatial(image)derivativeoftheimageformedundermask
,exceptforascalefactor.Thus,mayidenticaltotheimageformedunderthederivativemask,
beestimatedastheratioofthetwoimages.RangeisthencomputedfromusingtherelationshipgiveninEquation(6).
Thedifferentialchangeintheimagewithrespecttoachangeinthemaskpositionisobtainedbytakingthederivativeofthisequationwithrespecttothemaskposition,,andevaluatingat
0:
;
0
1
(9)
5
Combiningthesetwoequationsgivesarelationshipbetweenthetwoderivatives:
1
2
(12)
Byintegratingoverasmallpatchintheimage,theleast-squaressolutionavoidssingularitiesatlocationswherethespatialderivative,
,iszero.However,sincethedenominatorstillcontainsan
term
(integratedoverasmallimagepatch),asingularitystillexistswhen
iszeroovertheentireimage
patch.Thissingularitymaybeavoidedbyconsideringamaximumaposteriori(MAP)estimatorwithaGaussianprioron
(asin[3]).Forapriorvarianceof
2
,theresultingestimateis:
Thisalgorithmextendstoatwo-dimensionalimageplane:weneedonlyconsidertwo-dimensionalmasks
,andthehorizontalpartialderivative
.Foramorerobust
implementation,theverticalpartialderivativemask,Theleast-squareserrorfunctionbecomes:
,mayalsobeincluded.
2
2
(14)
Asabove,theMAPestimatorgives:
factorisincludedtoensurethatthechangesintheaperturesizedonotchangethemeanintensityof
theimage.
Thedifferentialchangeintheimagewithrespecttoaperturesizemaybecomputedbytakingthederivativeofthisequationwithrespecttoaperturesize,
,evaluatedat
1:
2
2
andthespatialderivativeofthisimageis:
1
(19)
whichisequaltoEquation(17)withanadditionalfactorofmeasurementscouldbeusedtocompute
.Thus,theratioofthesetwoimage
(andthusrange).
AparticularlyinterestingchoiceforamaskfunctionisaGaussian:
;
1
2
2
forwhich
1
(20)
whichmayberelatedtothespatialsecondderivative:
1
1
2
2
(23)
Thereareseveralnotabledifferencesbetweenthisformulationbasedonaperturesizederivativesandthepreviousformulationbasedonviewpointderivatives.First,asecond-orderspatialderivativeisrequired.Second,theratiooftheaperturesizederivativeandspatialderivativeisproportionaltothesquareoftheparameter.Assuch,onlytheabsolutevalueof
canbedetermined.Asecondlookattheopticalmasks8
revealswhythismustbeso.Whereastheviewpointderivativemaskisanti-symmetricwithrespecttothecenterofthelens,theaperturesizederivativemaskissymmetric.Asaresult,pointspositionedonoppositesidesofthefocalplanewilldifferbyasigninthecaseoftheanti-symmetricmask,butcouldappearidenticalinthecaseofthesymmetricmask.Thisambiguitymaybeeliminatedbyfocusingthecameraatinfinity,thusensuringthat
0.
3RangeMapEstimationbyOpticalDifferentiation
Equations(10)and(21)embodythefundamentalrelationshipsusedfortheopticaldifferentialcomputationofrangeforasinglepointlightsource.Aworldconsistingofacollectionofmanysuchpointsourcesimagedthroughanopticalmaskwillproduceanimageconsistingofasuperpositionofscaledanddilatedversionsofthemasks.Inparticular,inthecaseoftheviewpointderivative,anexpressionfortheimagecanbewrittenbyintegratingovertheimagesofthevisiblepoints,,intheworld:
;
1
(24)
wheretheintegralisperformedoverthevariable
,thepositioninthesensorofapointprojectedthrough
thecenterofthelens.Theintensityoftheworldpoint
isdenotedas
,and
ismonotonically
relatedtothedistanceto(asinEquation(6)).Notethateachpointsourceisassumedtoproduceauniformlightintensityacrosstheopticalmask(i.e.,brightnessconstancy).Again,considerthederivativesofwithrespecttoviewingposition,,andimageposition,,evaluatedat
;
0:
;
0
1
(26)
Anexactsolutionfor
isnontrivial,sinceitisembeddedintheintegrandanddependsontheintegration
variable.Nevertheless,thecomputationofEquation(10)givesanestimate:
ˆ
1
2
2
systems,astereopairofimagesisgeneratedbytwofixedmirrors,ata45anglewiththecamera’soptical
axisandarotatingmirrormadeparalleltoeachofthefixedmirrors.Inthesecondsystem,arotatingglassplateplacedinfrontofthemainlens,shiftstheopticalaxis,simulatingtwocameraswithparallelaxis.Thelastsystemplacestwoangledmirrorsinfrontofacameraproducinganimagewheretheleftandrighthalfoftheimagecorrespondtotheviewfromapairofvergedvirtualcameras.Ineachcase,rangeiscalculatedusingstandardstereomatchingalgorithms.Thebenefitoftheseapproachesisthattheyeliminatetheneedforextrinsiccameracalibration(i.e.,determinationoftherelativepositionsoftwoormorecameras),buttheydorequireslightlymorecomplicatedintrinsiccalibrationofthecameraoptics.
5Experiments
Wehaveverifiedtheprinciplesofopticaldifferentiationforrangeestimationbothinsimulationandexperimentation[16].Thissectiondiscussestheconstructionofaprototypecamera,andshowsexamplerangemapscomputedusingthiscamera.
5.1PrototypeCamera
Wehaveconstructedaprototypecameraforvalidatingthedifferentialapproachtorangeestimation.AsillustratedinFigure3,thecameraconsistsofanopticalattenuationmasksandwichedbetweenapairofplanar-convexlenses,andplacedinfrontofaCCDcamera.Thisarrangementplacesthemaskatthecenteroftheopticalsystem,wheretheviewpointinformationisisolated.ThecameraisaSonymodelXC-77R,thelensesare25mmindiameter,50mmfocallength,andwereplaced31mmfromthesensor.Thus,thecamerawasfocusedatadistanceof130mm.Wehaveemployedaliquidcrystalspatiallightmodulator(LCSLM),purchashedfromCRLSmecticTechnology(Middlesex,UK),foruseasanopticalattenuationmask,alsoshowninFigure3.Thisdeviceisafullyprogrammable,fast-switching,twistednematicliquidcrystaldisplaymeasuring38mm(W)
42mm(H)
4.3mm(D),withadisplayareaof28.48mm(W)
20.16mm(H).Thespatialresolutionis0480pixels,with4possibletransmittancevalues.Thedisplay
iscontrolledthroughastandardVGAvideointerface,suppliedbythemanufacturer.TheLCSLMrefreshesitsdisplayat30Hz;whensynchronizedwiththecamera,thepairofimagesmaybeacquiredbytemporalinterleavingatarateof15Hz.Alternatively,apairofimagescouldbeacquiredsimultaneously(i.e.,30Hz),byemployinganadditionalcamera,somebeam-splittingoptics,andtwofixedopticalmasks,asin[8].
11
Figure3:PrototypeCamera.Illustratedontheleftisafastswitchingliquidcrystalspatiallightmodulator(LCSLM)employedasanopticalattenuationmask.Illustratedontherightisourrangecameraconsistingofanoff-the-shelfCCDcameraandtheLCSLMsandwichedbetweenapairofplanar-convexlenses.Thetargetconsistsofapieceofpaperwitharandomtexturepattern.
Thesubsequentprocessing(i.e.,convolutionsandarithmeticcombinations)canbeperformedinreal-timeonageneral-purposeDSPchiporperhapsevenonafastRISCmicroprocesser.
5.2OpticalMasks
Themostessentialcomponentofourrangecameraistheopticalattenuationmask.Thefunctionalformofanysuchmaskmustonlycontainvaluesintherange01,whereavalueof0correspondstofullattenuation
andavalueof1correspondstofulltransmittance.Theviewpointandaperturesizederivativemasksbothcontainnegativevalues,andthusmaynotbeuseddirectly.Furthermore,addingapositiveconstanttothederivativemaskdestroysthederivativerelationship.Nonethelessapairofnon-negativemaskscanbeconstructedbytakingtheappropriatelinearcombinationoftheoriginalmasks.Inparticular,considerthefollowingconstructionofapairofnon-negativemasks:
1
1
1
and
2
2
2
(28)
wherethescalingparametersThedesiredmasks,
12
and
12
arechosensuchthat
1
and
2
lieintherange01.
and
canthenbereconstructedthroughasimplelinearcombinationsofthe:
2
non-negativemasks,
1
and
1
2
2
1
12
21
(29)
and
Iftheimagingsystemislinear,thedesiredimagesformedunderthemasks
12
canbe
Figure4:Gaussianaperturemasks.Left:Atwo-dimensionalGaussianmask,derivative,.Right:Twonon-negativeaperturemasks,1and2fromthepairofleft-mostmasksusingEquation(28).
anditspartial.Thesearecomputed
determinedfromtheimagesformedunderthemasks
1
and
2
:
(30)
,respectively.Clearly,
21
12
12
21
where
1
and
2
aretheimagesformedunderthemasks
1
and
2
thisconstructionextendsto2-Dopticalmasksaswell.IllustratedinFigure4isa2-DGaussianmask,
1
7
16
351
wherethe
representsthequantizedpixel,andthepositionoftheweightsrepresentspatialpositionona
rectangularsamplinglattice.Sincethisalgorithmmakesonlyasinglepassthroughtheimage,theneighborsreceivingaportionoftheerrormustconsistonlyofthosepixelsnotalreadyvisited(i.e.,thealgorithmshouldbecausal).Inordertoavoidsomeofthevisualartifactsduetothedeterministicnatureofthisalgorithm,stochasticvariationsmaybeintroduced.Alongtheselines,wehavetakenthestandarderror
13
diffusionalgorithmandrandomizedtheerror(byafactordistributeduniformlybetween90%and110%)beforedistributingittoitsneighbors,andalternatedthescanningdirection(oddlinesarescannedfromlefttoright,andevenlinesarescannedfromrighttoleft).5.2.2
Calibration
Inoursystem,thereareatleasttwopotentialnon-linearitiesthatneedtobeeliminated.Thefirstisthenon-linearityinthelighttransmittanceoftheopticalattenuationmasks.Anon-linearityatthisstagewillaffectthederivativerelationshipoftheopticalmasks.AsillustratedinFigure5,theLCSLMusedtogeneratetheopticalmasksishighlynon-linear.Showninthefirstpanelofthisfigureisthelighttransmittance(measuredwithaphotometer)throughauniformmasksettoeachofthefourLCDlevels.Ifthisdevicewerelinear,thenthesemeasurementswouldliealongaunit-slopeline.Clearlytheydonot.
Thisnon-linearitymaybecorrectedintheditheringprocess.Morespecifically,intheditheringalgorithmtheerrorbetweenthequantizedpixelvalueandthedesiredvalueisdistributedtoitsneighbors.Inordertocorrectforthenon-linearityintheLCSLM,thediffusederrormaybeassignedthedifferencebetweenthedesiredandmeasuredlighttransmittancesofthequantizedpixel.NotethatweareassumingthattheLCSLMpixelsareindependent(i.e.,therearenointeractionsbetweenneighboringtransmittancevalues).IllustratedinFigure5isthemeasuredlighttransmittancethrough32constantmasks,ditheredusingtothistechnique.Thedataareseentobemuchmorelinearthantheoriginalmeasurements.
Thesecondpotentialnon-linearitytoconsiderisintheimagingsensor.Withtheopticalmasklinearized,itispossibletotestthelinearityoftheimagingsensorbymeasuringthepixelintensityoftheimageofapointlightsourceimagedthroughaseriesof(dithered)uniformgraymasks.AsshowninFigure5,theimagingsensorisfairlylinear.Inparticular,thedatainthisfigurecloselyresemblesthemeasuredlighttransmittanceoftheLCSLMafterlinearization(Figure5).Thus,itisassumedthattheimagingsensorislinear,andasecondlinearizationcorrectionisnotnecessary.
Thefinalcalibrationthatneedstobeconsideredisthatofthecamera’sintrinsicpointspreadfunction(PSF).Morespecifically,indescribingtheformationofanimagethroughanopticalattenuationmaskwehavebeenassumingthatthecamera’sPSFisconstantacrossthelensdiameter(i.e.,theimageofapointlightsourceisassumedtobeahard-edgedrectangularfunction).Thisisgenerallynotthecaseinarealcamera:thePSFtypicallytakesonaGaussian-likeshape.ThePSFandtheopticalmaskwillbecombinedinamultiplicativefashion.Whereasbefore,weemployedamatchedpairofmasks,
14
and
,with
Normalized Light TransmittanceNormalized Light Transmittance11Normalized CCD Intensity10.50.50.5000.51000.51000.51Figure5:CalibrationofLCDmaskandCCDsensor.Showninthefirstpanelisthenormalizedlighttransmittance(incd/m2,asmeasuredwithaphotometer)throughconstantmaskssettoeachofthefourLCDvalues.Showninthesecondpanelisthenormalizedlighttransmittancemeasuredthrougheachof32uniformditheredandgamma-correctedmasks,averagedoverfivetrials.Ifourditheringandgamma-correctionwereperfect,themeasurements(circles)wouldliealongaunit-slopeline(dashedline).ShowninthethirdpanelisthenormalizedCCDpixelintensityofapointlightsourceasimagedthroughaseriesof32uniform,ditheredopticalmasks(withgammacorrection),averagedoverfivetrials,andspatiallyintegratedovera55pixelneighborhood.Ifboththeopticalmaskandimagingsensorwerelinear,thenthesemeasurements(circles)wouldliealongaunit-slopeline(dashedline).
(31)
where
isthecameraPSF.Thatis,thederivativerelationshipshouldbeimposedontheproductofthe
opticalmaskandthePSF.Wehavenotincludedthiscalibrationinourexperiments.
5.3Results
Wehaveverifiedtheprinciplesofrangeestimationbyopticaldifferentiationwithaprototypecamerawhichwehaveconstructed(seeFigure3).Accordingtoourinitialobservationweexpectthattheimageofapointlightsourcetobeascaledanddilatedcopyofthemaskfunction.IllustratedinFigure6isanexampleofthisbehavior:shownare1-Dslicesofimagestakenthroughapairofnon-negativeGaussian-basedopticalmasksprintedontoasheetoftransparentplastic(laterexperimentsutilizedtheLCSLMdescribedabove).Theappropriatelinearcombinationoftheseslices(Equation(30)),andtheresultingslicesof
and
.
Intheremainingexperimentsthetargetconsistedofasheetofpaperwitharandomtexturepatternandback-illuminatedwithanincandescentlamptohelpcounterthelowlighttransmittanceoftheLCSLMopticalmask.Spatialderivativeswerecomputedusingapairof5-tapfilterkernelsdescribedin[18].For
15
Figure6:Illustratedinthefirsttwopanelsare1-Dslicesoftheimageofa“pointlightsource”takenthroughapairofnon-negativeGaussian-basedmasks,1and2.Showninthethirdpanelare1-Dslicesofthelinearcombinationofthemeasurements(seeEquation(30)).Showninthefourthpanelare1-Dslicesoftheresultingimages(solid)and(dashed).Theseimagesshouldberelatedtoeachotherbyascalefactorof(seeEquation(10)).
example,the-derivativeiscomputedviaseparableconvolutionwiththeone-dimensionalderivativekernel
inthe
direction,andwithaone-dimensionalblurringkernelinthe
direction.Theviewpointderivative
wasfilteredwiththeblurringkernelinbothspatialdirections.Rangewasestimatedusingtheleast-squaresformulation(Equations(15)or(23)),withaspatialintegrationneighborhoodof31
31pixels.
IllustratedinFigures7and8areapairofrecoveredrangemapsforfrontal-parallelsurfacesplacedatdistancesof11and17cmfromthecamera.Thesefiguresillustratetherangemapscomputedusingopticalviewpointandaperturesizedifferentiation,respectively.Thecameraisfocusedatadistanceof13cm.Inthecaseoftheviewpointdifferentiation,therecoveredrangemapshadameanof10.9and17.0cm,withastandarddeviationof0.27and0.75cm,andaminimum/maximumestimateof10.1/11.8cmand15.1/19.4cm,respectively.Inthecaseoftheaperturesizedifferentiation,therecoveredrangemapshadameanof11.0and17.0cm,withastandarddeviationof0.06and0.16cmandaminimum/maximumestimateof10.8/11.2cmand16.5/17.5cm,respectively.Itwassomewhatsurprisingtodiscoverthattheaperturesizedifferentiationgavesignificantlybetterresultsthantheviewpointdifferentiation(intermsofstandarddeviation).Wesuspectthatonepossiblereasonforthisisthattheaperturesizemaskshaveahighertotallighttransmittance:fortheGaussian-basedopticalmasks,themeanlighttransmittanceis0.37,ascomparedtoameanof0.20fortheviewpointmasks.Increasedlighttransmittanceproducesahighersignal-to-noiseratiointhemeasurements.Althoughtheaperturesizedifferentiationhassmallererrorsinthisexample,itsuffersfromasignambiguity(i.e.,surfacesoneithersideofthefocalplanecanbeequallydefocused).IllustratedinFigure9isarecoveredrangemapforaplanersurfaceorientedapproximately30degreesrelativetothesensorplane,withthecenteroftheplane14cmfromthecamera,andapairofoccludingsurfacesplacedat11and17cm.Therecoveredrangemapsinthisfigureweredeterminedusing
16
theviewpointdifferentiationformulation.Qualitatively,theserangemapslookquitereasonable.
5.4Sensitivity
Aswithmostothertechniques,theinherentsensitivityofourmethodofrangeestimationisdependentonthebasicrulesoftriangulation.Inparticular,fromclassicalbinocularstereoweknowthatrangeisinverselyproportionaltodisparity:
(32)
Inoursystem,
playstheroleofdisparity,andeffectivebaselineisproportionaltolensdiameterand
dependentonthechoiceofopticalmasks.
Inaddition,errorsinestimating
willbeproportionalto
2.
Morespecifically,weconsidertheeffects
ofadditivenoiseinthedifferentialmeasurements:
ˆ
∆
2
∆∆
2∆
1
2∆
1
2
∆
(34)
Thatis,measurementerrorsleadtorangeerrorsthatscaleasthesquareofthedistancefromthefocalplane.
6Discussion
Wehavepresentedthetheory,analysis,andimplementationofanoveltechniqueforestimatingrangefromasinglestationarycamera.Thecomputationofrangeisdeterminedfromapairofimagestakenthroughoneoftwoopticalattenuationmasks.Thesubsequentprocessingoftheseimagesissimple,involvingonlyafew1Dconvolutionsandarithmeticoperations.
17
2010020100Figure7:Illustratedaretherecoveredrangemapsusingopticalviewpointdifferentiationforapairoffrontal-parallelsurfacesatadistanceof11and17cmfromthecamera.Thecomputedrangemapshaveameanof10.9and17.0cmwithastandarddeviationof0.27and0.75cm,respectively.
2010020100Figure8:Illustratedaretherecoveredrangemapscomputedusingopticalaperturesizedifferentiationforapairoffrontal-parallelsurfacesatadistanceof11and17cmfromthecamera.Thecomputedrangemapshaveameanof11.0and17.0cmwithastandarddeviationof0.06and0.16cm,respectively.
2010020100Figure9:Illustratedontheleftistherecoveredrangemapcomputedusingopticalviewpointdifferentiationforaslantedsurfaceorientedapproximately30degreesrelativetothesensorplanewiththecenteroftheplaneatadepthof14cm.Illustratedontherightistherecoveredrangemapforapairofoccludingsurfacesatadepthof11and17cm.
18
Thesimplicityofthistechniquehassomeclearadvantages.Inparticular,theuseofasinglestationarycamerareducesthecost,sizeandcalibrationoftheoverallsystem,andthesimpleandfastcomputationsrequiredtoestimaterangemakesthistechniqueamenabletoareal-timeimplementation.Incomparisontoclassicalstereoapproaches,ourapproachcompletelyavoidsthedifficultandcomputationallydemanding“correspondence”problem.Inaddition,withonlyasinglestationarycamera,weavoidtheneedforextrinsiccameracalibration.Therearesomedisadvantagesaswell.Mostnotably,theconstructionofanon-standardimagingsystem,andthelimitedrangeaccuracyduetothesmalleffectivebaseline.
Acounterintuitiveaspectofourtechniqueisthatitreliesonthedefocusoftheimage.Inparticular,aperfectlyfocusedimagecorrespondsto
0,leadingtoasingularityinEquation(10).Wehavepartially
overcomethisproblembyimposingapriordensityonthatbiasessolutionstowardthefocalplane.But
ingeneral,accuracywillbebestforsurfacesoutsideofthefocalplane.
Theresultspresentedherecanbeimprovedinanumberofways.Abettermaskdesign,whichincludestheeffectsofthePSFofthecameraopticsandoptimizeslighttransmittancewhilesatisfyingthedesiredderivativerelationshipcouldhavealargeeffectonthequalityoftheestimator.Intheproposedcamera,apairofimagesareacquiredinatemporallyinterleavedfashion,sothatmotioninthescenewillbemisinterpretedasfalserangeinformation.Amoresophisticatedalgorithmshouldbedevelopedthatcompensatesforanyinter-framemotion.Alternatively,thetechniquecouldbemodifiedtomeasurethetwoimagessimultaneously(usingabeamsplitter,asin[8]).Finally,aswithallintensity-basedrangeimagingapproaches,theresultsmaybeimprovedbyilluminatingthescenewithstructuredlight.
Acknowledgments
ThisresearchwasperformedwhileHFwasintheGRASPLaboratoryattheUniversityofPennsylvania,wherehewassupportedbyARODAAH04-96-1-0007,DARPAN00014-92-J-17,andNSFSBR-20230.HFiscurrentlyatMITwhereheissupportedbyNIHGrantEY11005-04andMURIGrantN00014-95-1-0699.ThisresearchwasperformedwhileEPSwasintheGRASPLaboratoryattheUniversityofPennsylvania,wherehewaspartiallysupportedbyARO/MURIDAAH04-96-1-0007.EPSiscurrentlyatNYU,whereheispartiallysupportedbyNSFCAREERgrant9624855.Portionsofthisworkhaveappearedin[19,20,21,16].
19
References
[1]B.K.P.Horn.RobotVision.MITPress,Cambridge,MA,1986.
[2]B.D.LucasandT.Kanade.Aniterativeimageregistrationtechniquewithanapplicationtostereo
vision.InProceedingsofthe7thInternationalJointConferenceonArtificialIntelligence,pages674–679,Vancouver,1981.
[3]E.P.Simoncelli,E.H.Adelson,andD.J.Heeger.Probabilitydistributionsofopticalflow.InProc
ConfonComputerVisionandPatternRecognition,pages310–315,Mauii,Hawaii,June1991.IEEEComputerSociety.
[4]A.P.Pentland.Anewsensefordepthoffield.IEEETransactionsonPatternAnalysisandMachine
Intelligence,9(4):523–531,1987.
[5]M.Subbarao.Paralleldepthrecoverybychangingcameraparameters.InProceedingsoftheIn-ternationalConferenceonComputerVision,pages149–155,Tampa,FL,1988.IEEE,NewYork,NY.
[6]Y.XiongandS.Shafer.Depthfromfocusinganddefocusing.InProceedingsoftheDARPAImage
UnderstandingWorkshop,pages967–976,NewYork,NY,1993.IEEE,Piscataway,NJ.
[7]A.M.SubbaraoandG.Surya.Depthfromdefocus:Aspatialdomainapproach.InternationalJournal
ofComputerVision,13(3):271–294,1994.
[8]S.K.Nayar,M.Watanabe,andM.Noguchi.Real-timefocusrangesensor.IEEETransactionson
PatternAnalysisandMachineIntelligence,18(12):1186–1198,1995.
[9]M.WatanabeandS.Nayar.Minimaloperatorsetforpassivedepthfromdefocus.InProceedings
oftheConferenceonComputerVisionandPatternRecognition,pages431–438,SanFrancisco,CA,1996.IEEE,LosAlasmitos,CA.
[10]E.R.DowskiandW.T.Cathey.Single-lenssingle-imageincoherentpassive-rangingsystems.Applied
Optics,33(29):6762–6773,1994.
[11]D.G.JonesandD.G.Lamb.Analyzingthevisualecho:Passive3-dimagingwithamultipleaperture
camera.TechnicalReportCIM-93-3,DepartmentofElectricalEngineering,McGillUniversity,1993.
20
[12]E.H.AdelsonandJ.Y.A.Wang.Singlelensstereowithaplenopticcamera.IEEETransactionson
PatternAnalysisandMachineIntelligence,14(2):99–106,1992.
[13]W.TeohandX.D.Zhang.Aninexpensivestereoscopicvisionsystemforrobots.InInternational
ConferenceonRobotics,pages186–1,1984.
[14]Y.NishimotoandY.Shirai.Afeature-basedstereomodelusingsmalldisparities.InProceedingsof
theConferenceonComputerVisionandPatternRecognition,pages192–196,Tokyo,1987.[15]A.GoshtasbyandW.A.Gruver.Designofasingle-lensstereocamerasystem.PatternRecognition,
26(6):923–937,1993.
[16]H.Farid.RangeEstimationbyOpticalDifferentiation.PhDthesis,DepartmentofComputerand
InformationScience,UniversityofPennsylvania,Philadelphia,PA.,1997.
[17]R.W.FloydandL.Steinberg.Anadaptivealgorithmforspatialgreyscale.ProceedingsoftheSociety
forInformationDisplay,17(2):75–77,1976.
[18]H.FaridandE.P.Simoncelli.Optimallyrotation-equivariantdirectionalderivativekernels.InCom-puterAnalysisofImagesandPatterns,Kiel,Germany,1997.
[19]E.P.SimoncelliandH.Farid.Directdifferentialrangeestimationfromaperturederivatives.In
ProceedingsoftheEuropeanConferenceonComputerVision,pages82–93(volumeII),Cambridge,England,1996.
[20]E.P.SimoncelliandH.Farid.Single-lensrangeimagingusingopticalderivativemasks,1995.U.S.
PatentPending(filed14Nov1995).InternationalPatentPending(filed13Nov1996).
[21]H.FaridandE.P.Simoncelli.Adifferentialopticalrangecamera.InProceedingsoftheAnnual
MeetingoftheOpticalSocietyofAmerica,Rochester,NY,1996.
21
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo0.cn 版权所有 湘ICP备2023017654号-2
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务