HaijunYu,1,2XiaoyiXu,1,2XuesiChen,1TianchengLu,1,2PeibiaoZhang,1XiabinJing1StateKeyLaboratoryofPolymerPhysicsandChemistry,ChangchunInstituteofAppliedChemistry,ChineseAcademyofSciences,Changchun130022,People’sRepublicofChina2GraduateSchoolofChineseAcademyofSciences,Beijing100039,People’sRepublicofChina
Received20April2006;accepted14May2006DOI10.1002/app.24835
PublishedonlineinWileyInterScience(www.interscience.wiley.com).ABSTRACT:Thepoly(vinylalcohol)/poly(N-vinylpyr-rolidone)(PVA–PVP)hydrogelscontainingsilvernanopar-ticleswerepreparedbyrepeatedfreezing–thawingtreat-ment.Thesilvercontentinthesolidcompositionwasintherangeof0.1–1.0wt%,thesilverparticlesizewasfrom20to100nm,andtheweightratioofPVAtoPVPwas70:30.Theinfluenceofsilvernanoparticlesontheproper-tiesofPVA–PVPmatrixwasinvestigatedbydifferentialscanningcalorimeter,infraredspectroscopyandUV–visspectroscopy,usingPVA–PVPfilmscontainingsilverpar-ticlesasamodel.Themorphologyoffreeze-driedPVA–PVPhydrogelmatrixanddispersionofthesilvernanoparticlesin
thematrixwasexaminedbyscanningelectronmicroscopy.Itwasfoundthatathree-dimensionalstructurewasformedduringtheprocessoffreezing–thawingtreatmentandnose-riousaggregationofthesilvernanoparticlesoccurred.Waterabsorptionproperties,releaseofsilverionsfromthehydro-gelsandtheantibacterialeffectsofthehydrogelsagainstEscherichiacoliandStaphylococcusaureuswereexaminedtoo.Itwasprovedthatthenanosilver-containinghydrogelshadanexcellentantibacterialability.Ó2006WileyPeriodicals,Inc.
JApplPolymSci103:125–133,2007
1Keywords:silver;hydrogel;antibiotic;wounddressing
INTRODUCTION
Despitemajoradvancesinburnwoundmanagementandothersupportivecareregimens,infectionre-mainstheleadingcauseofmorbidityinthether-mallyinjuredpatients,andthesearchfordifferenttreatmentsandnewideasiscontinuing.1Silvermetalandsilverionshavebeenknownaseffectiveanti-microbialagentsforalongtime,Theapplicationofsilver-bindingmembraneshasrecentlybeensug-gestedtofurtherreducethesilvertoxicity,toretardthemovementofsilverions,andtominimizesilverabsorptionatahealingwound.2–4Therehavebeenseveralkindsofsilver-containingmaterialsthatcanbeusedforwounddressing.Forexample,silversulfadiazinecontainingchitosan-basedwounddressing,5–7dendrimer–silvercomplexesandnanocomposites,8nanosilver/celluloseacetatecom-positefibers,andsilvernylondressingswereallprovedtobeantibacterial.9,10Besideanantibioticability,however,theprincipalfunctionofawounddressingistoprovideanoptimalhealingenviron-ment,e.g.,isolationfromtheexternalenvironment,
Correspondenceto:X.Jing(xbjing@ciac.jl.cn).
Contractgrantsponsor:NationalNaturalScienceFounda-tionofChina;contractgrantnumbers:20274048,50373043.Contractgrantsponsor:ChineseAcademyofSciences;con-tractgrantnumber:KJCX2-SW-H07.
C2006WileyPeriodicals,Inc.V
JournalofAppliedPolymerScience,Vol.103,125–133(2007)
completecoverageofthewoundsurfacetoprevent
furthercontaminationorinfection,andmaintenanceofamoistmicroenvironmentnexttothewoundsur-face.11Hydrogelsconsistofthree-dimensionalhydro-philicpolymernetworksinwhichalargeamountofwaterisinterposed.Becauseoftheiruniqueproper-ties,awiderangeofmedical,pharmaceutical,andprostheticapplicationshavebeenproposedforthem.12Sohydrogelwounddressingsarebetterchoicethanfabricsorfilmsforburninjurytreatment.Manypolymerscanbeusedtopreparehydrogels,suchaspoly(vinylalcohol)(PVA)andpoly(vinylpyr-rolidone)(PVP).PVAisawell-knownbiologicallyfriendlypolymerandhasbeendevelopedforbiomed-icalapplicationssuchasartificialpancreas,13–15syn-theticvitreousbody,16wounddressing,artificialskin,andcardiovasculardevice.17,18PVPisoneofthemostwidelyusedpolymersinmedicinebecauseofitssolu-bilityinwateranditsextremelylowcytotoxicity.19ArecentworkdescribedthetopicalapplicationofPVPontotheskinfortransdermaldeliveryofdrugs.20CombinationofthepropertiesofPVAandPVPinPVA–PVPblendshasledtothepreparationofnewbiomaterials.21,22Inourpreviousstudy,23physicallycrosslinkedPVA–PVPhydrogelswithperfectme-chanicalpropertieswerepreparedbycyclicfreezing–thawingtreatment.
Inthispaper,therefore,greatattemptsaremadetoincorporatesilvernanoparticlesintoPVA–PVPhy-drogelstocombinethegoodmechanicalstrengthof
126PVA–PVPhydrogelwounddressingandthepower-fulantibacterialabilityofnanosilvertogether.Theformulationandpropertiesofthisnovelwounddress-ing,theinvitroreleaseprofilesofthesilverionsfromthehydrogelandtheantibacterialactivityagainstGram-negativeEscherichiacoli(E.coli)andGram-posi-tiveStaphylococcusaureus(S.aureus)arereported.EXPERIMENTAL
Materials
Polyvinalalcohol(PVA)withahydrolysisdegreeof99.0–99.8%(molecularweight¼7.3Â104–7.7Â104)wassuppliedbyShanghaiChemicalReagentCom-pany¼3.6(Shanghai,Â105China).PVP(molecularweight)waspurchasedfromBASFChemicalCo.(Ludwigshafen,Germany).Thesepolymerswereusedwithoutfurtherpurification.Silvernitrate(AgNO3),sodiumcitrateandallotherreagentswereofanalyticalgradeandusedwithoutfurtherpurifi-cation.Distilledwaterwasusedassolventinallexperiments.
Preparations
Preparationofsilversols
ThesilvernanoparticleswerepreparedbysodiumcitratereductionofAgNO3.24Typically,18mgofAgNO3wasdissolvedin100mLofdistilledwaterandbroughttoboiling.Twomillilitersof1%solu-tionoftrisodiumcitratewasadded,andthesolutionwaskeptonboilingfor$1h.TheAgsolpreparedwasgreenishyellow.
PreparationofAg/PVA–PVPcompositehydrogelsAPVA–PVPaqueoussolutionwasaddedintothepreparedAgsol.ThetotalconcentrationofPVAandPVPwas$12wt%andthePVA-to-PVPweightratiowas70:30.TheweightcontentsofsilverwithrespecttothePVA–PVPamountusedwere0.1,0.2,0.4,0.8,and1.0wt%,respectively.Themixtureso-lutionwasputintothewellsofa24-wellplateandwasfrozenat(À208Cfor12handthenthawedat258Cfor12h.Thistreatmentwasrepeatedforthreetimesandhydrogeldisksofabout3mminthicknesswereobtained.Thetotalsolidcontentinthehydro-gelswas12wt%.
PreparationofAg/PVA–PVPcompositefilmsToinvestigatetheinteractionbetweensilverandPVA–PVPmatrix,nanosilver/PVA–PVPcomposite
YUETAL.
filmswerepreparedasmodelsforAg/PVA–PVPhy-drogels.ThemixturesolutionswerepreparedbythesamemethodasforAg/PVA–PVPhydrogelsbutthetotalconcentrationofPVAandPVPwas$1wt%.Thenthemixturesolutionswerecastontoglassslidesanddriedinvacuumfor24hat608Ctoobtainthecompositefilmsofca.100mminthickness.Characterization
Structureandmorphology
UV–VisspectraofthesilversolsandtheAg/PVA–PVPfilmswerecollectedusingaUV-2400spectro-photometer(2100,Shimadzu,Kyoto,Japan)withaslitwidthof2.0nm.Thesizedistributionofthesil-vernanoparticleswasmeasuredusingatransmissionelectronmicroscope(TEM-20100TOEL,Tokyo,Japan)andadynamiclightscatteringinstrument(DLS)withaverticallypolarizedHe–Nelaser(DAWNEOS,WyattTechnology,SantaBarbara,CA)atafixedscatteringangleof908andataconstanttemperatureof258C.ThestructuresoftheAg/PVA–PVPfilmswerecharac-terizedbyFouriertransforminfraredspectroscopy(FTIR,BrukerVertex70,Ettlingen,Germany).Adiffer-entialscanningcalorimeter(DSC-7,Perkin–Elmer,Nor-walk,CT)wasemployedtodetectthecrystallinestatusinthenanoAg/PVA–PVPfilmsoverthetemperaturerangeof50–2408Catascanningrateof108C/minundernitrogenprotection.Thesurfaceandcrosssec-tionmorphologyofthefreeze-driednanoAg/PVA–PVPhydrogelswasexaminedusingafieldemissionscanningelectronmicroscope(FE-SEM,FEI/Philips,Hillsboro,OR).Watertake-up
Thepreparedhydrogelplateswereimmersedindis-tilledwaterof200-foldsmassat378Cfor24h,23thentheyweretakenoutandweighedafterremovalofthefreewateronthesurfaceswithfilterpaper.Theequilibriumswelling-ratio(ESR)wascalculatedby
ESRð%Þ¼ðWeÀWdÞ=WdÂ100%
whereWewastheweightoftheswollengelinequi-libriumstateandWdwasthesolidweightinthehydrogel.
Releaseofsilverionsfromthehydrogels
TheinvitroreleaseprofilesofsilverionsfromthehydrogelswereobtainedbythemethoddevelopedbyRadheshKumar.25Briefly,thehydrogelsof0.3gwasstoredinaflaskcontaining10mLaqueousme-dium(9.5mLdistilledwaterþ0.5mL0.1NHNO3)at378Candtheflaskwasoscillatedatafrequencyof
PVA–PVPHYDROGELSCONTAININGSILVERNANOPARTICLES127
Figureticlesprepared1TypicalbysodiumTEMmicrographcitratereductionofthesilverofAgNOnanopar-3.
60rpminarotaryshaker.HNO3wasaddedtopro-tectthereleasedAgþionsfrombeingreducedtome-tallicsilver.Theconcentrationsofsilverionsreleasedfromthehydrogelsintothewaterweremeasuredusinganinductivelycoupledplasmaatomicabsorb-ancespectrometer(SPS-1500VR,SeikoInstruments,Tokyo,Japan).
AntibacterialPVA–PVPhydrogels
abilityofthenanoAg/AntibacterialtestwasperformedbymodifiedKirbyBauertechniqueandLBbrothmethod.26Followingtwomicroorganismswereused:S.aureusstrain209,ATCC25,923,whichisGram-positiveandcanexistonthebodysurfaceofmammals;E.coli,ATCC25,922,whichisGram-negativeandisawidespreadintestinalparasiteofmammals.Thebacteriawerecultivatedat378CinsterilizedLBbroth(peptone10g,yeastextract5g,NaNO310g,distilledwater1000mL)at90rpminarotaryshakerfor16h.InthemodifiedKirbyBauermethod,adropletof50mLbacteriamediumwasdispensedontoanagarplate,thenthehydrogeldiskswereplacedandtheincuba-tionwascontinuedfor24hat378C.IntheLBbrothmethod,thehydrogeldisksof0.3gwereputintheflasks,whichcontained10mLaqueousmediumat378Candwereoscillatedatafrequencyof60rpmforperiodsrangingfrom1to96h.Then3.0mLoftheaboveaqueoussolutionwasmixedwith3.0mL
ofthebacteriamedium,theincubationwascontin-uedforanother6h.CulturewithpureLBbrothservedascontrol.Theopticaldensity(OD)ofthebacterialbrothmediumat600nmwasmeasuredbyaUV–visspectrophotometer.TheinhibitionratiosforthenanoAg/PVA–PVPhydrogelswerecalcu-latedasfollows:
Inhibitionratioð%Þ¼100À100
ÂðAtÀA0Þ=ðAconÀA0Þ
whereA0wastheODforbacterialbrothmediumbeforeincubation;AtandAconweretheODsforhydrogelandcontrolsampleafter6hincubation,respectively.
RESULTSANDDISCUSSION
Silvernanoparticles
Thesilvernanoparticleswerepreparedasananosil-versolorasilvercolloidbyreducingAgNO3withsodiumcitrate.TheirTEMimageisshowninFigure1.Theiraveragesizeisabout100nm.Theirsurfacesaresmooth.Figure2showstheirdiameterdistribu-tiondeterminedbyDLS,rangingover30–170nmwithanaverageof100nm.AtypicalabsorptionspectrumofthesilvercolloidalsolutionisshowninFigure3(a).AccordingtoRef.27,thisbandisassignedtothesurfaceplasmonabsorption(SPR)ofthenanosilverparticles.Itpeaksat425nmandhasabandwidthathalfmaximumof$130nm,whichisanindicationoftheparticlesizedistribution.
Figuredetermined2SizebyDLSdistributionmeasurement.
ofthesilvernanoparticles128Figuresol3UV–visabsorptionspectraofas-preparedsilver(b–e).inwater(a)andnanoAg/PVA–PVPcompositefilms(e)1.0Silverwt%.
contents:(b)0.2wt%;(c)0.4wt%;(d)0.8wt%;Ag/PVA–PVPcompositefilms
Toinvestigatepossibleinteractionsbetweenthesil-vernanoparticlesandthePVA–PVPmatrixintheAg/PVA–PVPcompositehydrogelsandtounder-standtheinfluenceofthesilvernanoparticlesonthestructureandperformanceofthehydrogels,compos-ite,Ag/PVA–PVPfilmswerepreparedinthepres-entstudyasamodelofAg/PVA–PVPhydrogels.Thesamemixturesolutionswereusedforbothcom-positefilmsandcompositehydrogels.Therefore,themodelfilmshavethesamesolidcompositionasthecompositehydrogels.Becausethereisnointerfer-enceofwaterinthemodelfilms,theycanbeeasilycharacterizedbyvarioustechniques.
Figure3alsoshowstheUV–visspectraoftheAg/PVA–PVPcompositefilms.TheSPRbandsoftheAg/PVA–PVPcompositefilmsshowdifferentpeakpositionsandpeakwidths.Forthefilmscontaining0.2,0.4,0.8,and1.0wt%ofnanosilver,thebandspeakat410,419,425,and443nm,respectively.ComparedwithFigure3(a)forthepuresilvercolloi-dalsolution,thefirsttwoshowblue-shiftswhiletheothertwoshowred-shifts.Amongthefourcompos-itefilms,onlytheonecontaining1.0wt%ofsilvershowscomparablebandwidth(160nm)tothecol-loidalsolution,therestthreegivenarrowerbandwidths(70–130nm).IthasbeenprovedthatPVAandPVParebothgoodstabilizingagentsforsilvernanoparticles.27,28Sotheblue-shiftsandthenar-rowerwidthsoftheSPRbandscanbeexplainedasthesmallersizeandmoreuniformsizedistribution
YUETAL.
ofthesilvernanoparticlesinthefirsttwocompositefilmsandthered-shiftsandwiderwidthindicatetheoppositevariations,whichcanbeinducedbyag-glomerationoftheAgnanoparticlesand/orchangeofthedielectricpropertiesofthesurroundingenvi-ronment.29Thiscanbefurtherexplainedbyconsid-eringtheinteractionsbetweenthenanosilverandthePVA–PVPmatrixinthefollowingdiscussions.AsseeninFigure4,anincreaseofthesilvercon-tentintheAg/PVA–PVPcompositefilmsleadstoenhancementofthe1145cmÀ1bandforthefilmscontaining0.1and0.2wt%ofnanosilverandtoweakeningofthesamebandforthefilmscontainingmorenanosilver.ThisbandcanbeassignedtoCÀÀOstretchingvibrationofPVA.ItisameasureoftheinteractionbetweenPVPandPVA.Itsenhancementandweakeningwithsilver-contentrevealinvolve-mentofthenanosilverintheinteractionbetweenPVPandPVA.
TheDSCtracesofpurePVA–PVPandnanoAg/PVA–PVPcompositefilmswithvariouscontentsofsilverareshowninFigure5.Themeltingtempera-tures(Tm),glasstransitiontemperatures(Tg)andmeltingenthalpies(DHm)ofthevarioussamplesarelistedinTableI.Sureenough,theTm,Tg,andDHmallshowsimilarvariationswithincreasingnanosil-vercontent,i.e.,increasing(TgandDHm)ordecreas-ing(Tm)forthefilmscontaining0.1,0.2and0.4wt%ofnanosilverandchangingreverselyforthosefilmscontainingmorenanosilver.ItisnoticedthatallAg/PVA–PVPfilmsshowmoreDHmthanthePVA–PVPfilm.TheseresultsdifferfromthatreportedbyZ.H.Mbheleetal.29Intheirstudy,incorporationofsilverparticles,withaveragediameterof5nm,intothePVAmatrixledtoadramaticdecreaseinTmandincreasein
FigurePVA–PVP4FTIR0.2,0.4,0.8,compositespectraand1.0wtfilmsofpurePVA–PVPandnanoAg/%).
withdifferentAgcontents(0.1,PVA–PVPHYDROGELSCONTAININGSILVERNANOPARTICLES129
FigurePVA–PVP5DSC(ForcompositecurvesfilmsofpurewithvariousPVA–PVPcontentsandnanoAg/ofsilverHeatingclarity,ratecurves108C/min).
arepresentedintherange180–2308C.Tgbothbymorethan208Cbutdidnotaffectcrystallin-ityinPVA.TheyexplainedtheobservedeffectsasthereducedmobilityofthePVAchainsattachedtothesur-faceoftheAgnanoparticles.ToexplaintheaboveresultsofUV–vis,FTIR,andDSCobservations,wehavetoconsiderthepossibleinteractionsintheAg/PVA–PVPsystems,i.e.,thosebetweenPVAandPVP,betweenPVAandnanosilver,andbetweenPVPandnanosilver.Inthepreviouswork,23weprovedthatthecrystallinityofPVAinPVA–PVPhydrogelsdecreasedwithincreasingPVPcontent,becauseoftheinterfer-enceofPVPtothecrystallizationofPVA.ItseemsthatthePVPhasstrongerinteractionthanthePVAdoeswiththesilverparticles.WhensilverparticlesareaddedintothePVA–PVPmatrix,theyinteractwiththePVPmoleculespreferentially,theinteractionbetweenPVAandPVPmoleculesisweakened,whichresultsintheimprovementofthecrystallinityofPVAinthecomposite(indicatedbytheincreaseofDHm).Ontheotherhand,interactionsbetweenthesilverparticles
MeltingandGlassEnthalpyTransition(DHTABLEMeltingI
m),PeakTemperature(Tm),andAg/PVA–PVPTemperatureComposite(Tg)ofFilms
PurePVA–PVP
Ag(wt%)
Tg(8C)Tm(8C)DHm(J/g)088.3216.425.50.188.7215.431.60.290.621333.10.495208.928.30.887.1210.4321
88.6
214.7
34
FigurenanoAg/PVA–PVP6WaterabsorptionabilityofpurePVA–PVPtentsofsilver.
compositehydrogelswithvariouscon-andandthePVAmoleculesstillexist,somobilityofthePVAchainsattachedtothesurfacesoftheAgparticlesisreduced.29Whensilvercontentis0.4wt%,thelowestTmandhighestTgareobtained.Furtherincrementofthesilvercontentresultsinaggregationofthesilvernano-particles,weakeningoftheirinteractionswithbothPVAandPVP,andenhancementoftheinteractionbetweenPVPandPVA.ThisisinaccordancewiththeFTIRdata.Onthebasisoftheaboveresults,wecandrawaconclusionthatsilverparticlescouldbeequablydis-persedinthePVA–PVPhydrogelmatrixduetotheirinteractionwiththePVA–PVPmatrix.Therefore,PVA–PVPhydrogelcouldbeusedasaneligiblesil-vernanoparticlecarriertopreparesilver-containinghydrogelsusedforwounddressing.Ag/PVA–PVPcompositehydrogelsWaterabsorption
Besidesgoodmechanicalproperties,ahydrogelwounddressinghastoabsorbtheexudatesonthewoundsurfaceandprovideawetenvironmentforthewound.Sothewaterabsorbingandkeepingabil-ityofhydorgelsisveryimportant.Water-take-upabilityoftheAg/PVA–PVPhydrogelsisshowninFigure6.Itcanbefoundthatallhydrogelsshowaswellingratioashighas40folds,whichisenoughforhydrogelwounddressings.Theincorporationofthenanosilverinthehydrogeldoesnotinfluencethewaterabsorptionability.SEManalysis
Itiswellknownthataporoussurfaceisimportantforthetransportofoxygenfromoutsidetoinsideof
130YUETAL.
Figure7SEMimagesofpurePVA–PVPandnanoAg/PVA–PVPcompositehydrogels.(a)surfaceimageofPVA–PVPhydrogelplate;(b)surfaceimageof0.1wt%Ag/PVA–PVPhydrogelplate;(c)surfaceimageof0.8wt%Ag/PVA–PVPhydrogelplate;(d)cross-sectionimageof0.1wt%Ag/PVA–PVPhydrogelplate;(e)cross-sectionimageof0.8wt%Ag/PVA–PVPhydrogelplate.
PVA–PVPHYDROGELSCONTAININGSILVERNANOPARTICLES131
thewounddressing,andathree-dimensionalnet-workstructureiscrucialtoabsorbingandkeepinglargeamountofwaterinhydrogelmaterials.Weexaminedthesurfaceandcross-sectionalmorpholo-giesofAg/PVA–PVPcompositehydrogelsbySEM.AsshowninFigure7,poroussurfacemorphologyandthree-dimensionalnetworkstructureinthecrosssectionareformedinbothPVA–PVPandAg/PVA–PVPhydrogels.Nodistinguisheddifferenceisfoundforthehydrogelswithdifferentsilvercontents.Noseriousaggregationofthenanoparticlesisobservedevenwhenthesilvercontentisupto1wt%.ThiscanbeexplainedasastablenetworkstructureformedinthehydrogelsandthestronginteractionbetweenthesilverparticlesandthePVAandPVPmoleculesaswehavediscussedintheprevioussection.InvitroreleaseofsilverionsfromthehydrogelsTheantimicrobialactivityofsilverisdependentonthesilvercationAgþ,whichbindsstronglytoelec-tron-donatinggroupsinbiologicalmoleculescon-tainingsulfur,oxygenornitrogen.Hencethesilver-basedantimicrobialpolymershavetoreleasetheAgþtoapathogenicenvironmenttobeeffective.InthisworkthesilverreleasemodeldevelopedbyRadheshKumarwasemployed,andatomicabsorp-tionspectroscopy(AAS)wasusedforthequantita-tivedeterminationofthesilverionreleasedfromthehydrogels.25FiveAg/PVA–PVPhydrogelsampleswithsilvercontentsof0.1,0.2,0.4,0.8,and1.0wt%withrespecttototalPVA–PVPweightwereused.Thedurationof96hwasselectedforthereleaseexperimenttostudythewholereleaseprocessofthesilverions.AsshowninFigure8(A),thereleaseofsilverionsfromthehydrogelsisveryquickatthebeginningandthenbecameslowerandslower.Thesilverionreleaseshowsdependencetosomeextentonthesilvercontentinthehydrogels.Forexample,theamountofsilverionsreleasedinthefirst12hincreaseswithincreasingsilvercontentinthehydro-gels,being0.20,0.45,1.35,3.76,and6.26ppmforthesamplescontaining0.1,0.2,0.4,0.8,and1.0wt%ofsilvercontent,respectively.Whenthesilverioncon-centrationreleasedisplottedagainstsquarerootofincubationtimeh1/2[Fig.8(B)],linearrelationshipsareobtained,exceptfortheinitialstagesofsoaking.Thisindicatesthatthereleaseofsilverionsiscon-trolledbytheinterdiffusionoftheionswithinthehydrogel.30Invitroantibacterialeffect
UsingamodifiedKirbyBauertechnique,thebacteri-cidaleffectsoftwoAg/PVA–PVPhydrogelsandpurePVA–PVPhydrogelwereevaluatedcompara-
Figurecomposite8SilvertheconcentrationconcentrationhydrogelsionreleaseofsilverwithionvariousprofilesreleasedcontentsofnanoAg/PVA–PVPversusoftime;silver:(B)(A)thetime.%;(n)(&0.1)1.0wtwtof%.
%;silver(!)ion0.8wtreleased%;(~versus)0.4wtsquare%;(l)root0.2wtoftively.26After24hincubationat378C,theAg/PVA–PVPhydrogelsshowedantibacterialeffectonGram-positiveS.aureusandGram-negativeE.coli.Thediameterofinhibitionzoneforthe1.0wt%Ag/PVA–PVPhydrogelisslightlylargerthanthatforthe0.2wt%Ag/PVA–PVPsample(seeFig.9).Asacontrol,thepurePVA–PVPhydrogelshowednoinhibitionability.Elementalsilverhasbeenbelievedtofunctionantimicrobiallyeitherasareleasesystemforsilverionsorasacontact-activematerial.31Inthepresentstudy,theAg/PVA–PVPhydrogelsseemtobeonlycontact-active.Thediffusingabilityofthesil-verionsonagarplatemighthavebeenlimitedbytheformationofsecondarysilvercompounds,whichisthelimitationoftheKirbyBauertechniqueasaquantitative32tooltodeterminetheantimicrobialac-tivity.Therefore,LBmediummethodwasintro-
132ducedtodeterminetheantimicrobial26activityofAg/PVA–PVPhydrogelsquantitatively.PurePVA–PVPhydrogelandfourAg/PVA–PVPsamples(Agwt%¼0.1,0.2,0.4,and1.0,respectively)weretested.AsshowninFigure10,theantibioticabilitytoE.coli,expressedasinhibitionratio,wasenhancedwithincreasingsilvercontentinthehydrogels.Whenthesilvercontentwas1.0wt%,theinhibitionratioreachedupto90%.
CONCLUSIONS
ThePVA–PVPhydrogelscontainingsilvernanopar-ticleswerepreparedthroughrepeatedfreezing–
FigureS.(b)aureus9(B)AntibacterialaftertestresultsforE.coli(A)andPVP0.2wt%Ag/PVA–PVP24hincubation.hydrogel;(a)(c)PVA–PVP1.0wt%hydrogel;issue,hydrogel.whichisavailable[Colorfigureatwww.interscience.wiley.com.]
canbeviewedintheAg/PVA–onlineYUETAL.
Figureabilityhydrogelsto10E.Quantitativeincoli6hofduration.
thepureevaluationPVA–PVPofandinvitroAg/PVA–PVPinhibitionthawingtreatment.Thesilvercontentwithrespecttothepolymersusedwasintherangeof0.1–1.0wt%.Thesilverparticlesizewasfrom20to100nmasmeasuredbyTEMandSDLS.ByusingPVA–PVPfilmscontainingsilverparticlesasamodel,theinflu-enceofsilvernanoparticlesonthepropertiesofPVA–PVPmatrixwasinvestigatedbyUV–vis,DSC,andFTIR,themorphologyoffreeze-driedPVA–PVPhydrogelmatrixanddispersionofthesilvernano-particlesinthematrixwasexaminedbySEM.Itwasfoundthatathree-dimensionalstructurewasformedduringtheprocessoffreezing–thawingtreatmentandnoseriousaggregationofthesilvernanopar-ticlesoccurred.Waterabsorptionproperties,thereleaseofsilverionsfromthehydrogelswereinves-tigated,andtheantibacterialeffectsofthehydrogelsagainstE.coliandS.aureuswereexaminedbymodi-fiedKBmethodandLBbrothmethod.Itwasprovedthatthenanosilver-containinghydrogelshadanexcellentantibacterialperformance.
WethankProfessorShanChenofNortheastNormalUniversityinChinaforprovidingthemicroorganismsS.aureusandE.coli.
References
1.Greenfield,E.;McManus,A.T.NursClinNorthAm1997,32,297.
2.Klasen,H.JBurns2000,26,117.3.Klasen,H.JBurns2000,26,131.
4.Tsipouras,N.;Rix,C.J.;Brady,P.H.ClinChem1997,43,290.5.Mi,F.L.;Wu,Y.B.;Shyu,S.S.;Schoung,J.Y.;Huang,Y.B.;Tsai,Y.H.;Hao,J.Y.JBiomedMaterRes2002,59,438.
PVA–PVPHYDROGELSCONTAININGSILVERNANOPARTICLES133
6.Yu,S.H.;Mi,F.L.;Wu,Y.B.;Peng,C.K.;Shyu,S.S.;Huang,R.N.J.ApplPolymSci2005,98,538.
7.Mi,F.L.;Wu,Y.B.;Shyu,S.S.;Chao,A.C.;Lai,J.Y.;Su,C.C.JMembraneSci2003,212,237.
8.Son,W.K.;Youk,J.H.;Lee,T.S.;Park,W.H.MacromolRapidCommun2004,25,1632.
9.Balogh,L.;Swanson,D.R.;Tomalia,D.A.;Hagnauer,G.L.;McManus,A.T.NanoLett2001,1,18.
10.Vuong,T.E.;Franco,E.;Lehnert,S.;Lambert,C.;Portelance,
L.;Nasr,E.;Faria,S.;Hay,J.;Larsson,S.;Shenouda,G.;Sou-hami,L.;Wong,F.;Freeman,C.IntJRadiatOncologyBiolPhys2004,59,809.
11.Nho,Y.C.;Park,K.R.JApplPolymSci2002,85,1787.12.Drury,J.L.;Mooney,D.J.Biomaterials2003,24,4337.
13.Giusti,P.;Lazzeri,L.;Barbani,N.JMaterSciMaterMed1993,
4,538.
14.Young,T.H.;Yao,N.K.;Chang,R.F.;Chen,L.W.Biomateri-als1996,17,2139.
15.Young,T.H.;Chuang,W.Y.;Yao,N.K.;Chen,L.W.J.
BiomedMaterRes1998,40,385.
16.Inoue,K.;Fujisato,T.;Gu,Y.J.;Burczak,K.;Sumi,S.;Kogire,
M.;Tobe,T.;Uchida,K.;Nakai,I.;Maetani,S.;Ikada,Y.Pan-creas1992,7,562.
17.Burczak,K.;Gamian,E.;Kochman,A.Biomaterials1996,17,
2351.18.Rosiak,J.M.;Ulanski,P.RadiatPhysChem1999,55,139.
19.Razzak,M.T.;Zainuddin,E.;Dewi,S.;Lely,H.;Taty,S.
RadiatPhysChem1999,55,153.
20.Lopes,C.M.A.;Felisberti,M.I.Biomaterials2003,24,1279.21.Cassu,S.N.;Felisberti,M.I.Polymer1997,38,3907.
22.Seabra,A.B.;Oliveira,M.G.Biomaterials2004,25,3773.
23.Yu,H.J.;Xu,X.Y.;Chen,X.S.;Hao,J.Q.;Jing,X.B.J.Appl
PolymSciaccepted.
24.Jin,Y.D.;Dong,S.J.JPhysChemB107:129022003.25.Kumar,R.;Unstedt,H.M.Biomaterials20812005,26.
26.Melaiye,A.;Sun,Z.H.;Hindi,K.;Milsted,A.;Ely,D.;
Reneker,D.H.;Tessier,C.A.;Youngs,W.J.JAmChemSoc2005,127,2285.
27.Yin,B.S.;Ma,H.Y.;Wang,S.Y.;Chen,S.H.JPhysChemB
107:882003.
28.Gaddy,G.A.;Korchev,A.S.;McLain,J.L.;Slaten,B.L.;
Steigerwalt,E.S.;Mills,G.JPhysChemB2004,108,14850.29.Mbhele,Z.H.;Salemane,M.G.;Sittert,C.G.C.E.;Nedeljko-vicc
´,J.M.;Djokovic´,V.;Luyt,A.SChemMater2003,15,5019.30.Kawashita,M.;Toda,S.;Kim,H.M.;Kokubo,T.;Masuda,N.
JBiomedMaterRes2003,66,266.
31.Chan,H.H.;Jan,T.;Christina,S.;Ralf,T.;Joerg,C.T.
AdvancedMaterials2004,16,967.
32.Nomiya,K.;Tsuda,K.;Sudoh,T.;Oda,M.JInorgBiochem
1997,68,39.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo0.cn 版权所有 湘ICP备2023017654号-2
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务