您好,欢迎来到华佗小知识。
搜索
您的当前位置:首页astm材料与实验标准[1].e112-2004

astm材料与实验标准[1].e112-2004

来源:华佗小知识
Designation:E112–96(Reapproved2004)e1StandardTestMethodsfor

DeterminingAverageGrainSize1ThisstandardisissuedunderthefixeddesignationE112;thenumberimmediatelyfollowingthedesignationindicatestheyearoforiginaladoptionor,inthecaseofrevision,theyearoflastrevision.Anumberinparenthesesindicatestheyearoflastreapproval.Asuperscriptepsilon(e)indicatesaneditorialchangesincethelastrevisionorreapproval.ThisstandardhasbeenapprovedforusebyagenciesoftheDepartmentofDefense.

e1NOTE—Reference(2)waseditoriallycorrectedinMay2006.

INTRODUCTION

Thesetestmethodsofdeterminationofaveragegrainsizeinmetallicmaterialsareprimarilymeasuringproceduresand,becauseoftheirpurelygeometricbasis,areindependentofthemetaloralloyconcerned.Infact,thebasicproceduresmayalsobeusedfortheestimationofaveragegrain,crystal,orcellsizeinnonmetallicmaterials.Thecomparisonmethodmaybeusedifthestructureofthematerialapproachestheappearanceofoneofthestandardcomparisoncharts.Theinterceptandplanimetricmethodsarealwaysapplicablefordeterminingaveragegrainsize.However,thecomparisonchartscannotbeusedformeasurementofindividualgrains.

1.Scope

1.1Thesetestmethodscoverthemeasurementofaveragegrainsizeandincludethecomparisonprocedure,theplanimet-ric(orJeffries)procedure,andtheinterceptprocedures.Thesetestmethodsmayalsobeappliedtononmetallicmaterialswithstructureshavingappearancessimilartothoseofthemetallicstructuresshowninthecomparisoncharts.Thesetestmethodsapplychieflytosinglephasegrainstructuresbuttheycanbeappliedtodeterminetheaveragesizeofaparticulartypeofgrainstructureinamultiphaseormulticonstituentspecimen.1.2Thesetestmethodsareusedtodeterminetheaveragegrainsizeofspecimenswithaunimodaldistributionofgrainareas,diameters,orinterceptlengths.Thesedistributionsareapproximatelylognormal.Thesetestmethodsdonotcovermethodstocharacterizethenatureofthesedistributions.CharacterizationofgrainsizeinspecimenswithduplexgrainsizedistributionsisdescribedinTestMethodsE1181.Mea-surementofindividual,verycoarsegrainsinafinegrainedmatrixisdescribedinTestMethodsE930.

1.3Thesetestmethodsdealonlywithdeterminationofplanargrainsize,thatis,characterizationofthetwo-dimensionalgrainsectionsrevealedbythesectioningplane.Determinationofspatialgrainsize,thatis,measurementofthe

sizeofthethree-dimensionalgrainsinthespecimenvolume,isbeyondthescopeofthesetestmethods.

1.4Thesetestmethodsdescribetechniquesperformedmanuallyusingeitherastandardseriesofgradedchartimagesforthecomparisonmethodorsimpletemplatesforthemanualcountingmethods.Utilizationofsemi-automaticdigitizingtabletsorautomaticimageanalyzerstomeasuregrainsizeisdescribedinTestMethodsE1382.

1.5Thesetestmethodsdealonlywiththerecommendedtestmethodsandnothinginthemshouldbeconstruedasdefiningorestablishinglimitsofacceptabilityorfitnessofpurposeofthematerialstested.

1.6ThemeasuredvaluesarestatedinSIunits,whichareregardedasstandard.Equivalentinch-poundvalues,whenlisted,areinparenthesesandmaybeapproximate.

1.7Thisstandarddoesnotpurporttoaddressallofthesafetyconcerns,ifany,associatedwithitsuse.Itistheresponsibilityoftheuserofthisstandardtoestablishappro-priatesafetyandhealthpracticesanddeterminetheapplica-bilityofregulatorylimitationspriortouse.

1.8Theparagraphsappearinthefollowingorder:

Section

Scope

ReferencedDocumentsTerminology

SignificanceandUse

GeneralitiesofApplicationSampling

TestSpecimensCalibration

PreparationofPhotomicrographsComparisonProcedure

Number

123456710

ThesetestmethodsareunderthejurisdictionofASTMCommitteeE04onMetallographyandarethedirectresponsibilityofSubcommitteeE04.08onGrainSize.

CurrenteditionapprovedNov.1,2004.PublishedNovember2004.Originallyapprovedin1955.Lastpreviouseditionapproved1996asE112–96e3.

1Copyright©ASTMInternational,100BarrHarborDrive,POBoxC700,WestConshohocken,PA19428-2959,UnitedStates.

1

E112–96(2004)e1Planimetric(Jeffries)ProcedureGeneralInterceptProceduresHeynLinearInterceptProcedureCircularInterceptProceduresHilliardSingle-CircleProcedureAbramsThree-CircleProcedureStatisticalAnalysis

SpecimenswithNon-equiaxedGrainShapes

SpecimensContainingTwoorMorePhasesorConstituentsReport

PrecisionandBiasKeywordsAnnexes:

BasisofASTMGrainSizeNumbers

1112131414.214.3151617181920

AnnexA1

EquationsforConversionsAmongVariousGrainSizeMeasurementsAnnex

A2

AusteniteGrainSize,FerriticandAusteniticSteelsAnnex

A3

FractureGrainSizeMethodAnnex

A4

RequirementsforWroughtCopperandCopper-BaseAlloysAnnex

A5

ApplicationtoSpecialSituationsAnnex

A6

Appendixes:

Appen-ResultsofInterlaboratoryGrainSizeDeterminations

dixX1

ReferencedAdjunctsAppen-dixX2

3.2.2grain—thatareawithintheconfinesoftheoriginal

(primary)boundaryobservedonthetwo-dimensionalplane-of-polishorthatvolumeenclosedbytheoriginal(primary)boundaryinthethree-dimensionalobject.Inmaterialscontain-ingtwinboundaries,thetwinboundariesareignored,thatis,thestructureoneithersideofatwinboundarybelongstothegrain.

3.2.3grainboundaryintersectioncount—determinationofthenumberoftimesatestlinecutsacross,oristangentto,grainboundaries(triplepointintersectionsareconsideredas1-1⁄2intersections).

3.2.4graininterceptcount—determinationofthenumberoftimesatestlinecutsthroughindividualgrainsontheplaneofpolish(tangenthitsareconsideredasonehalfaninterception;testlinesthatendwithinagrainareconsideredasonehalfaninterception).

3.2.5interceptlength—thedistancebetweentwoopposed,adjacentgrainboundaryintersectionpointsonatestlinesegmentthatcrossesthegrainatanylocationduetorandomplacementofthetestline.3.3Symbols:Symbols:aA—AAI,—d—DfG,—,a—,,—,t—,p,0=matrixgrainsinatwophase(constituent)microstructure.=testarea.

=meangraincrosssectionalarea.

=grainelongationratiooranisotropyindexforalongitudinallyorientedplane.=meanplanargraindiameter(PlateIII).=meanspatial(volumetric)graindiameter.=Jeffriesmultiplierforplanimetricmethod.=ASTMgrainsizenumber.=meanlinealinterceptlength.

=meanlinealinterceptlengthoftheamatrixphaseinatwophase(constituent)microstructure.

=meanlinealinterceptlengthonalongitu-dinallyorientedsurfaceforanon-equiaxedgrainstructure.

=meanlinealinterceptlengthonatrans-verselyorientedsurfaceforanon-equiaxedgrainstructure.

=meanlinealinterceptlengthonaplanarorientedsurfaceforanon-equiaxedgrainstructure.

=baseinterceptlengthof32.00mmfordefiningtherelationshipbetweenGand,(andNL)formacroscopicallyormicro-scopicallydeterminedgrainsizebytheinterceptmethod.=lengthofatestline.=magnificationused.

=magnificationusedbyachartpictureseries.

=numberoffieldsmeasured.

2.ReferencedDocuments2.1ASTMStandards:2E3PracticeforPreparationofMetallographicSpecimensE7TerminologyRelatingtoMetallography

E407PracticeforMicroetchingMetalsandAlloys

E562PracticeforDeterminingVolumeFractionbySys-tematicManualPointCount

E691PracticeforConductinganInterlaboratoryStudytoDeterminethePrecisionofaTestMethod

E883GuideforReflected-LightPhotomicrography

E930TestMethodsforEstimatingtheLargestGrainOb-servedinaMetallographicSection(ALAGrainSize)E1181TestMethodsforCharacterizingDuplexGrainSizesE1382TestMethodsforDeterminingAverageGrainSizeUsingSemiautomaticandAutomaticImageAnalysis2.2ASTMAdjuncts:

2.2.1Foracompleteadjunctlist,seeAppendixX23.Terminology

3.1Definitions—Fordefinitionsoftermsusedinthesetestmethods,seeTerminologyE7.

3.2DefinitionsofTermsSpecifictoThisStandard:

3.2.1ASTMgrainsizenumber—theASTMgrainsizenumber,G,wasoriginallydefinedas:

NAE52

G21

(1)

whereNAEisthenumberofgrainspersquareinchat100Xmagnification.Toobtainthenumberpersquaremillimetreat1X,multiplyby15.50.

ForreferencedASTMstandards,visittheASTMwebsite,www.astm.org,orcontactASTMCustomerServiceatservice@astm.org.ForAnnualBookofASTMStandardsvolumeinformation,refertothestandard’sDocumentSummarypageontheASTMwebsite.

2LMMbn

2

E112–96(2004)e1NaNANAaNAENA,NAtNApNiNInsideNInterceptedNLNL,NLtNLpPiPLPL,PLtPLpQ

=numberofagrainsinterceptedbythetestlineinatwophase(constituent)micro-structure.

=numberofgrainspermm2at1X.

=numberofagrainspermm2at1Xinatwophase(constituent)microstructure.=numberofgrainsperinch2at100X.

=NAonalongitudinallyorientedsurfaceforanon-equiaxedgrainstructure.

=NAonatransverselyorientedsurfaceforanon-equiaxedgrainstructure.

=NAonaplanarorientedsurfaceforanon-equiaxedgrainstructure.

=numberofinterceptswithatestline.=numberofgrainscompletelywithinatestcircle.

=numberofgrainsinterceptedbythetestcircle.

=numberofinterceptsperunitlengthoftestline.

=NLonalongitudinallyorientedsurfaceforanon-equiaxedgrainstructure.

=NLonatransverselyorientedsurfaceforanon-equiaxedgrainstructure.

=NLonaplanarorientedsurfaceforanon-equiaxedgrainstructure.

=numberofgrainboundaryintersectionswithatestline.

=numberofgrainboundaryintersectionsperunitlengthoftestline.

=PLonalongitudinallyorientedsurfaceforanon-equiaxedgrainstructure.

=PLonatransverselyorientedsurfaceforanon-equiaxedgrainstructure.

=PLonaplanarorientedsurfaceforanon-equiaxedgrainstructure.

=correctionfactorforcomparisonchartratingsusinganon-standardmagnifica-tionformicroscopicallydeterminedgrainsizes.

=correctionfactorforcomparisonchartratingsusinganon-standardmagnifica-tionformacroscopicallydeterminedgrainsizes.

=standarddeviation.

=grainboundarysurfaceareatovolumeratioforasinglephasestructure.

=grainboundarysurfaceareatovolumeratioforatwophase(constituent)struc-ture.

=students’tmultiplierfordeterminationoftheconfidenceinterval.

=volumefractionoftheaphaseinatwophase(constituent)microstructure.=95%confidenceinterval.=percentrelativeaccuracy.

consistingentirely,orprincipally,ofasinglephase.Thetestmethodsmayalsobeusedforanystructureshavingappear-ancessimilartothoseofthemetallicstructuresshowninthecomparisoncharts.Thethreebasicproceduresforgrainsizeestimationare:

4.1.1ComparisonProcedure—Thecomparisonproceduredoesnotrequirecountingofeithergrains,intercepts,orintersectionsbut,asthenamesuggests,involvescomparisonofthegrainstructuretoaseriesofgradedimages,eitherintheformofawallchart,clearplasticoverlays,oraneyepiecereticle.Thereappearstobeageneralbiasinthatcomparisongrainsizeratingsclaimthatthegrainsizeissomewhatcoarser(1⁄2to1Gnumberlower)thanitactuallyis(seeX1.3.5).Repeatabilityandreproducibilityofcomparisonchartratingsaregenerally61grainsizenumber.

4.1.2PlanimetricProcedure—Theplanimetricmethodin-volvesanactualcountofthenumberofgrainswithinaknownarea.Thenumberofgrainsperunitarea,NA,isusedtodeterminetheASTMgrainsizenumber,G.Theprecisionofthemethodisafunctionofthenumberofgrainscounted.Aprecisionof60.25grainsizeunitscanbeattainedwithareasonableamountofeffort.Resultsarefreeofbiasandrepeatabilityandreproducibilityarelessthan60.5grainsizeunits.Anaccuratecountdoesrequiremarkingoffofthegrainsastheyarecounted.

4.1.3InterceptProcedure—Theinterceptmethodinvolvesanactualcountofthenumberofgrainsinterceptedbyatestlineorthenumberofgrainboundaryintersectionswithatestline,perunitlengthoftestline,usedtocalculatethemeanlinealinterceptlength,—,.—,isusedtodeterminetheASTMgrainsizenumber,G.Theprecisionofthemethodisafunctionofthenumberofinterceptsorintersectionscounted.Apreci-sionofbetterthan60.25grainsizeunitscanbeattainedwithareasonableamountofeffort.Resultsarefreeofbias;repeatabilityandreproducibilityarelessthan60.5grainsizeunits.Becauseanaccuratecountcanbemadewithoutneedofmarkingoffinterceptsorintersections,theinterceptmethodisfasterthantheplanimetricmethodforthesamelevelofprecision.

4.2Forspecimensconsistingofequiaxedgrains,themethodofcomparingthespecimenwithastandardchartismostconvenientandissufficientlyaccurateformostcommer-cialpurposes.Forhigherdegreesofaccuracyindeterminingaveragegrainsize,theinterceptorplanimetricproceduresmaybeused.Theinterceptprocedureisparticularlyusefulforstructuresconsistingofelongatedgrains.

4.3Incaseofdispute,theinterceptprocedureshallbetherefereeprocedureinallcases.

4.4Noattemptshouldbemadetoestimatetheaveragegrainsizeofheavilycold-workedmaterial.Partiallyrecrystallizedwroughtalloysandlightlytomoderatelycold-workedmaterialmaybeconsideredasconsistingofnon-equiaxedgrains,ifagrainsizemeasurementisnecessary.

4.5Individualgrainmeasurementsshouldnotbemadebasedonthestandardcomparisoncharts.Thesechartswereconstructedtoreflectthetypicallog-normaldistributionofgrainsizesthatresultwhenaplaneispassedthrougha

3

QmsSVSVatVVa95%CI%RA

4.SignificanceandUse

4.1Thesetestmethodscoverproceduresforestimatingandrulesforexpressingtheaveragegrainsizeofallmetals

E112–96(2004)e1three-dimensionalarrayofgrains.Becausetheyshowadistri-butionofgraindimensions,rangingfromverysmalltoverylarge,dependingontherelationshipoftheplanarsectionandthethree-dimensionalarrayofgrains,thechartsarenotapplicabletomeasurementofindividualgrains.

5.GeneralitiesofApplication

5.1Itisimportant,inusingthesetestmethods,torecognizethattheestimationofaveragegrainsizeisnotaprecisemeasurement.Ametalstructureisanaggregateofthree-dimensionalcrystalsofvaryingsizesandshapes.Evenifallthesecrystalswereidenticalinsizeandshape,thegraincrosssections,producedbyarandomplane(surfaceofobservation)throughsuchastructure,wouldhaveadistributionofareasvaryingfromamaximumvaluetozero,dependinguponwheretheplanecutseachindividualcrystal.Clearly,notwofieldsofobservationcanbeexactlythesame.

5.2Thesizeandlocationofgrainsinamicrostructurearenormallycompletelyrandom.Nonominallyrandomprocessofpositioningatestpatterncanimprovethisrandomness,butrandomprocessescanyieldpoorrepresentationbyconcentrat-ingmeasurementsinpartofaspecimen.Representativeimpliesthatallpartsofthespecimencontributetotheresult,not,assometimeshasbeenpresumed,thatfieldsofaveragegrainsizeareselected.Visualselectionoffields,orcastingoutofextrememeasurements,maynotfalsifytheaveragewhendonebyunbiasedexperts,butwillinallcasesgiveafalseimpressionofhighprecision.Forrepresentativesampling,theareaofthespecimenismentallydividedintoseveralequalcoherentsub-areasandstagepositionsprespecified,whichareapproximatelyatthecenterofeachsub-area.Thestageissuccessivelysettoeachofthesepositionsandthetestpatternappliedblindly,thatis,withthelightout,theshutterclosed,ortheeyeturnedaway.Notouch-upofthepositionsoselectedisallowable.Onlymeasurementsmadeonfieldschoseninthiswaycanbevalidatedwithrespecttoprecisionandbias.6.Sampling

6.1Specimensshouldbeselectedtorepresentaverageconditionswithinaheatlot,treatmentlot,orproduct,ortoassessvariationsanticipatedacrossoralongaproductorcomponent,dependingonthenatureofthematerialbeingtestedandthepurposeofthestudy.Samplinglocationandfrequencyshouldbebaseduponagreementsbetweenthemanufacturersandtheusers.

6.2Specimensshouldnotbetakenfromareasaffectedbyshearing,burning,orotherprocessesthatwillalterthegrainstructure.

7.TestSpecimens

7.1Ingeneral,ifthegrainstructureisequiaxed,anyspecimenorientationisacceptable.However,thepresenceofanequiaxedgrainstructureinawroughtspecimencanonlybedeterminedbyexaminationofaplaneofpolishparalleltothedeformationaxis.

7.2Ifthegrainstructureonalongitudinallyorientedspeci-menisequiaxed,thengrainsizemeasurementsonthisplane,oranyother,willbeequivalentwithinthestatisticalprecisionof

4

thetestmethod.Ifthegrainstructureisnotequiaxed,butelongated,thengrainsizemeasurementsonspecimenswithdifferentorientationswillvary.Inthiscase,thegrainsizeshouldbeevaluatedonatleasttwoofthethreeprincipleplanes,transverse,longitudinal,andplanar(orradialandtransverseforroundbar)andaveragedasdescribedinSection16toobtainthemeangrainsize.Ifdirectedtestlinesareused,ratherthantestcircles,interceptcountsonnon-equiaxedgrainsinplateorsheettypespecimenscanbemadeusingonlytwoprincipletestplanes,ratherthanallthreeasrequiredfortheplanimetricmethod.

7.3Thesurfacetobepolishedshouldbelargeenoughinareatopermitmeasurementofatleastfivefieldsatthedesiredmagnification.Inmostcases,exceptforthinsheetorwirespecimens,aminimumpolishedsurfaceareaof160mm2(0.25in.2)isadequate.

7.4Thespecimenshallbesectioned,mounted(ifneces-sary),ground,andpolishedaccordingtotherecommendedproceduresinPracticeE3.Thespecimenshallbeetchedusingareagent,suchaslistedinPracticeE407,todelineatemost,orall,ofthegrainboundaries(seealsoAnnexA3).

TABLE1SuggestedComparisonChartsforMetallicMaterials

NOTE1—Thesesuggestionsarebaseduponthecustomarypracticesinindustry.Forspecimenspreparedaccordingtospecialtechniques,theappropriatecomparisonstandardsshouldbeselectedonastructural-appearancebasisinaccordancewith8.2.

Material

Aluminum

Copperandcopper-basealloys(seeAnnexA4)Ironandsteel:AusteniticFerriticCarburizedStainless

Magnesiumandmagnesium-basealloysNickelandnickel-basealloysSuper-strengthalloysZincandzinc-basealloys

PlateNumberI

IIIorIV

BasicMagnification

100X75X,100X

IIorIVIIVIIIorIIIIIorIIIorII100X100X100X100X100X100X100X100X

8.Calibration

8.1Useastagemicrometertodeterminethetruelinearmagnificationforeachobjective,eyepieceandbellows,orzoomsettingtobeusedwithin62%.

8.2Usearulerwithamillimetrescaletodeterminetheactuallengthofstraighttestlinesorthediameteroftestcirclesusedasgrids.

9.PreparationofPhotomicrographs

9.1Whenphotomicrographsareusedforestimatingtheaveragegrainsize,theyshallbepreparedinaccordancewithGuideE883.

10.ComparisonProcedure

10.1Thecomparisonprocedureshallapplytocompletelyrecrystallizedorcastmaterialswithequiaxedgrains.

10.2Whengrainsizeestimationsaremadebythemoreconvenientcomparisonmethod,repeatedchecksbyindividualsaswellasbyinterlaboratorytestshaveshownthatunlessthe

E112–96(2004)e1FIG.1ExampleofUntwinnedGrains(FlatEtch)fromPlateI.

GrainSizeNo.3at100X

FIG.2ExampleofTwinGrains(FlatEtch)fromPlateII.Grain

SizeNo.3at100X

appearanceofthestandardreasonablywellapproachesthatofthesample,errorsmayoccur.Tominimizesucherrors,thecomparisonchartsarepresentedinfourcategoriesasfollows:310.2.1PlateI—Untwinnedgrains(flatetch).Includesgrainsizenumbers00,0,1⁄2,1,11⁄2,2,21⁄2,3,31⁄2,4,41⁄2,5,51⁄2,6,61⁄2,7,71⁄2,8,81⁄2,9,91⁄2,10,at100X.

10.2.2PlateII—Twinnedgrains(flatetch).Includesgrainsizenumbers,1,2,3,4,5,6,7,8,at100X.

10.2.3PlateIII—Twinnedgrains(contrastetch).Includesnominalgraindiametersof0.200,0.150,0.120,0.090,0.070,0.060,0.050,0.045,0.035,0.025,0.020,0.015,0.010,0.005mmat75X.

10.2.4PlateIV—Austenitegrainsinsteel(McQuaid-Ehn).Includesgrainsizenumbers1,2,3,4,5,6,7,8,at100X.10.3Table1listsanumberofmaterialsandthecomparisonchartsthataresuggestedforuseinestimatingtheiraveragegrainsizes.Forexample,fortwinnedcopperandbrasswithacontrastetch,usePlateIII.

NOTE1—Examplesofgrain-sizestandardsfromPlatesI,II,III,andIVareshowninFig.1,Fig.2,Fig.3,andFig.4.

10.4Theestimationofmicroscopically-determinedgrainsizeshouldusuallybemadebydirectcomparisonatthesamemagnificationastheappropriatechart.Accomplishthisbycomparingaprojectedimageoraphotomicrographofarepresentativefieldofthetestspecimenwiththephotomicro-graphsoftheappropriatestandardgrain-sizeseries,orwithsuitablereproductionsortransparenciesofthem,andselectthe

PlatesI,II,III,andIVareavailablefromASTMHeadquarters.OrderAdjunct:ADJE11201P(PlateI),ADJE11202P(PlateII),ADJE11203P(PlateIII),andADJE11204P(PlateIV).Acombinationofallfourplatesisalsoavailable.OrderAdjunct:ADJE112PS.

3FIG.3ExampleofTwinGrains(ContrastEtch)fromPlateIII.

GrainSize0.090mmat75X

photomicrographwhichmostnearlymatchestheimageofthetestspecimenorinterpolatebetweentwostandards.ReportthisestimatedgrainsizeastheASTMgrainsizenumber,orgraindiameter,ofthechartpicturethatmostcloselymatchestheimageofthetestspecimenorasaninterpolatedvaluebetweentwostandardchartpictures.

5

E112–96(2004)e1FIG.4ExampleofAusteniteGrainsinSteelfromPlateIV.Grain

SizeNo.3at100X

TABLE2MicroscopicallyDeterminedGrainSizeRelationshipsUsingPlateIIIatVariousMagnifications

NOTE1—Firstline—meangraindiameter,d,inmm;inparentheses—equivalentASTMgrainsizenumber,G.NOTE2—MagnificationforPlateIIIis75X(row3data).

Magnification

25X50X75X100X200X400X500X

ChartPictureNumber(PlateIII)

10.015(9.2)0.0075(11.2)0.005(12.3)0.00375(13.2)0.0019(15.2)——

20.030(7.2)0.015(9.2)0.010(10.3)0.0075(11.2)0.00375(13.2)0.0025(14.3)—

30.045(6.0)0.0225(8.0)0.015(9.2)0.0112(10.0)0.0056(12.0)0.0037(13.2)0.003(13.8)

40.060(5.2)0.030(7.2)0.020(8.3)0.015(9.2)0.0075(11.2)0.005(12.3)0.004(13.0)

50.075(4.5)0.0375(6.5)0.025(7.7)0.019(8.5)0.009(10.5)0.006(11.7)0.005(12.3)

60.105(3.6)0.053(5.6)0.035(6.7)0.026(7.6)0.013(9.6)0.009(10.7)0.007(11.4)

70.135(2.8)0.0675(4.8)0.045(6.0)0.034(6.8)0.017(8.8)0.011(10.0)0.009(10.6)

80.150(2.5)0.075(4.5)0.050(5.7)0.0375(6.5)0.019(8.5)0.0125(9.7)0.010(10.3)

90.180(2.0)0.090(4.0)0.060(5.2)0.045(6.0)0.0225(8.0)0.015(9.2)0.012(9.8)

100.210(1.6)0.105(3.6)0.070(4.7)0.053(5.6)0.026(7.6)0.0175(8.7)0.014(9.4)

110.270(0.8)0.135(2.8)0.090(4.0)0.067(4.8)0.034(6.8)0.0225(8.0)0.018(8.6)

120.360(0)0.180(2.0)0.120(3.2)0.090(4.0)0.045(6.0)0.030(7.2)0.024(7.8)

130.451(0/00)0.225(1.4)0.150(2.5)0.113(3.4)0.056(5.4)0.0375(6.5)0.030(7.2)

140.600(00+)0.300(0.5)0.200(1.7)0.150(2.5)0.075(4.5)0.050(5.7)0.040(6.3)

10.5Goodjudgmentonthepartoftheobserverisnecessarytoselectthemagnificationtobeused,thepropersizeofarea(numberofgrains),andthenumberandlocationinthespecimenofrepresentativesectionsandfieldsforestimatingthecharacteristicoraveragegrainsize.Itisnotsufficienttovisuallyselectwhatappeartobeareasofaveragegrainsize.Recommendationsforchoosingappropriateareasforallpro-cedureshavebeennotedin5.2.

10.6Grainsizeestimationsshallbemadeonthreeormorerepresentativeareasofeachspecimensection.

10.7Whenthegrainsareofasizeoutsidetherangecoveredbythestandardphotographs,orwhenmagnificationsof75Xor100Xarenotsatisfactory,othermagnificationsmaybeem-ployedforcomparisonbyusingtherelationshipsgiveninNote

6

2andTable2.Itmaybenotedthatalternativemagnificationsareusuallysimplemultiplesofthebasicmagnifications.

NOTE2—IfthegrainsizeisreportedinASTMnumbers,itisconve-nienttousetherelationship:

Q52log2~M/Mb!

(2)

56.log10~M/Mb!

whereQisacorrectionfactorthatisaddedtotheapparentmicro-grainsizeofthespecimen,asviewedatthemagnification,M,insteadofatthebasicmagnification,Mb(75Xor100X),toyieldthetrueASTMgrain-sizenumber.Thus,foramagnificationof25X,thetrueASTMgrain-sizenumberisfournumberslowerthanthatofthecorrespondingphotomi-crographat100X(Q=−4).Likewise,for400X,thetrueASTMgrain-sizenumberisfournumbershigher(Q=+4)thanthatofthecorrespondingphotomicrographat100X.Similarly,for300X,thetrueASTMgrain-size

E112–96(2004)e1TABLE3MacroscopicGrainSizeRelationshipsComputedforUniform,RandomlyOriented,EquiaxedGrains

NOTE1—MacroscopicallydeterminedgrainsizenumbersM-12.3,M-13.3,M-13.8andM-14.3correspond,respectively,tomicroscopicallydeterminedgrainsizenumbers(G)00,0,0.5and1.0.

MacroGrainSizeNo.M-0M-0.5M-1.0M-1.5M-2.0M-2.5M-3.0M-3.5M-4.0M-4.5M-5.0M-5.5M-6.0M-6.5M-7.0M-7.5

¯AGrains/UnitAreaNNo./mm20.00080.00110.00160.00220.00310.00440.00620.00880.01240.01750.02480.03510.04960.07010.0990.140

No./in.20.500.711.001.412.002.834.005.668.0011.3116.0022.6332.0045.26.0090.51

¯AverageGrainAreaAmm21290.3912.45.2456.2322.6228.1161.3114.080.57.0240.3228.5120.1614.2610.087.13

in.22.001.411.000.7070.5000.3540.2500.1770.1250.08840.06250.04420.03120.02210.01560.0110310−3M-8.0M-8.5M-9.0M-9.5M-10.0M-10.5M-11.0M-11.5M-12.0M-12.3M-12.5M-13.0M-13.3M-13.5M-13.8M-14.0M-14.3

0.1980.2810.3970.5610.7941.1221.5872.2453.1753.9084.4906.3497.8178.97911.05512.69915.634

128.0181.0256.0362.1512.0724.11024.11448.22048.12521.626.54096.35043.15793.07132.18192.610086.3

5.043.562.521.781.260.10.6300.04450.3150.2560.2230.1570.1280.1110.0910.0790.0

7.8125.5243.9062.7621.9531.3810.9770.6900.4880.3970.3450.2440.1980.1730.1400.1220.099

2.251.1.591.331.120.9940.7940.6670.5610.5060.4720.3970.3580.3340.3010.2810.253

—dAverageDiametermm35.930.225.421.418.015.112.710.78.987.556.355.344.493.783.172.67

in.1.411.191.000.8410.7070.5950.5000.4200.3540.2970.2500.2100.1770.1490.1250.105310−388.474.362.552.4.237.231.226.322.119.918.615.614.113.111.811.09.96

2.001.681.411.191.000.8410.7070.5950.5000.4510.4200.3540.3190.2970.2680.2500.225

—,MeanInterceptmm32.0026.9122.6319.0316.0013.4511.319.518.006.735.6.7.003.362.832.38

in.1.21.00.0.740.630.530.440.370.310.260.220.180.150.130.110.093310−378.766.255.746.839.433.127.823.419.717.716.613.912.511.710.59.848.87

0.5000.5950.7070.8411.001.191.411.682.002.222.382.833.143.363.734.004.44

50.0059.4670.7184.09100.0118.9141.4168.2200.0221.9237.8282.8313.8336.4373.2400.0443.8

¯LNmm−10.0310.0370.0440.0530.0630.0740.0880.1050.1250.1490.1770.2100.2500.2970.3540.420

¯N100mm3.133.724.425.266.257.438.8410.5112.5014.8717.6821.0225.0029.7335.32.05

numberisfournumbershigherthanthatofthecorrespondingphotomi-crographat75X.

10.8Thesmallnumberofgrainsperfieldatthecoarseendofthechartseries,thatis,size00,andtheverysmallsizeofthegrainsatthefineendmakeaccuratecomparisonratingsdifficult.Whenthespecimengrainsizefallsateitherendofthechartrange,amoremeaningfulcomparisoncanbemadebychangingthemagnificationsothatthegrainsizeliesclosertothecenteroftherange.

10.9Theuseoftransparencies4orprintsofthestandards,withthestandardandtheunknownplacedadjacenttoeachother,istobepreferredtotheuseofwallchartcomparisonwiththeprojectedimageonthemicroscopescreen.

TransparenciesofthevariousgrainsizesinPlateIareavailablefromASTMHeadquarters.OrderAdjunct:ADJE112TSfortheset.Transparenciesofindividualgrainsizegroupingsareavailableonrequest.OrderAdjunct:ADJE11205T(GrainSize00),ADJE11206T(GrainSize0),ADJE11207T(GrainSize0.5),ADJE11208T(GrainSize1.0),ADJE11209T(GrainSize1.5),ADJE11210T(GrainSize2.0),ADJE11211T(GrainSize2.5),ADJE11212T(GrainSizes3.0,3.5,and4.0),ADJE11213T(GrainSizes4.5,5.0,and5.5),ADJE11214T(GrainSizes6.0,6.5,and7.0),ADJE11215T(GrainSizes7.5,8.0,and8.5),andADJE11216T(GrainSizes9.0,9.5,and10.0).Chartsillustratinggrainsizenumbers00to10areon81⁄2by11in.(215.9by279.4mm)film.TransparenciesforPlatesII,III,andIVarenotavailable.

410.10Noparticularsignificanceshouldbeattachedtothefactthatdifferentobserversoftenobtainslightlydifferentresults,providedthedifferentresultsfallwithintheconfidencelimitsreasonablyexpectedwiththeprocedureused.

10.11Thereisapossibilitywhenanoperatormakesre-peatedchecksonthesamespecimenusingthecomparisonmethodthattheywillbeprejudicedbytheirfirstestimate.Thisdisadvantagecanbeovercome,whennecessary,bychangesinmagnification,throughbellowsextension,orobjectiveoreyepiecereplacementbetweenestimates(1).510.12Maketheestimationofmacroscopically-determinedgrainsizes(extremelycoarse)bydirectcomparison,atamagnificationof1X,oftheproperlypreparedspecimen,orofaphotographofarepresentativefieldofthespecimen,withphotographsofthestandardgrainseriesshowninPlateI(foruntwinnedmaterial)andPlatesIIandIII(fortwinnedmate-rial).Sincethephotographsofthestandardgrainsizeseriesweremadeat75and100diametersmagnification,grainsizesestimatedinthiswaydonotfallinthestandardASTMgrain-sizeseriesandhence,preferably,shouldbeexpressed

Theboldfacenumbersinparenthesesrefertothelistofreferencesappendedtothesetestmethods.

57

E112–96(2004)e1TABLE4GrainSizeRelationshipsComputedforUniform,RandomlyOriented,EquiaxedGrains

GrainSizeNo.

G

0000.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.012.513.013.514.0

¯AGrains/UnitAreaN

No./in.2at100X

0.250.500.711.001.412.002.834.005.668.0011.3116.0022.6332.0045.25.0090.51128.00181.02256.00362.04512.00724.081024.001448.152048.0026.314096.005792.628192.00

No./mm2at1X3.887.7510.9615.5021.9231.0043.8462.0087.68124.00175.36248.00350.73496.00701.45992.001402.91984.02805.83968.05611.67936.011223.215872.022446.431744.1442.963488.1785.8126976.3

¯AverageGrainAreaAmm20.25810.12900.09120.050.04560.03230.02280.01610.01140.008060.005700.004030.002850.002020.001430.001010.000710.000500.000360.000250.000180.000130.00000.0000630.0000450.0000320.0000220.0000160.0000110.000008

µm2258012903291239515620322582281016129114058065570340322851201614261008713504356252178126.163.044.631.522.315.811.17.9

—dAverageDiametermm0.50800.35920.30210.25400.21360.17960.15100.12700.10680.080.07550.06350.05340.04490.03780.03180.02670.02250.010.01590.01330.01120.00940.00790.00670.00560.00470.00400.00330.0028

µm508.0359.2302.1254.0213.6179.6151.0127.0106.8.875.563.553.444.937.831.826.722.518.915.913.311.29.47.96.75..74.03.32.8

—,MeanInterceptmm0.45250.32000.26910.22630.19030.16000.13450.11310.09510.08000.06730.05660.04760.04000.03360.02830.02380.02000.01680.01410.01190.01000.00840.00710.00600.00500.00420.00350.00300.0025

µm452.5320.0269.1226.3190.3160.0134.5113.195.180.067.356.7.0.033.628.323.820.016.814.111.910.08.47.15.95.04.23.53.02.5

¯LNNo./mm2.213.123.724.425.266.257.438.8410.5112.5014.8717.6821.0225.0029.7335.32.0450.0059.4670.7184.09100.0118.9141.4168.2200.0237.8282.8336.4400.0

eitherasdiameteroftheaveragegrainorasoneofthemacro-grainsizenumberslistedinTable3.Forthesmallermacroscopicgrainsizes,itmaybepreferabletouseahighermagnificationandthecorrectionfactorgiveninNote3,particularlyifitisdesirabletoretainthismethodofreporting.

NOTE3—IfthegrainsizeisreportedinASTMmacro-grainsizenumbers,itisconvenienttousetherelationship:

Qm52log2M56.log10M

whereQMisacorrectionfactorthatisaddedtotheapparentgrainsizeofthespecimen,whenviewedatthemagnificationM,insteadofat1X,toyieldthetrueASTMmacro-grainsizenumber.Thus,foramagnificationof2X,thetrueASTMmacro-grainsizenumberistwonumbershigher(Q=+2),andfor4X,thetrueASTMmacro-grainsizenumberisfournumbershigher(Q=+4)thanthatofthecorrespondingphotograph.

(3)

fractureofhardenedsteel(2),involvescomparisonofthespecimenunderinvestigationwithasetofstandardfractures.6IthasbeenfoundthatthearbitrarilynumberedfracturegrainsizeseriesagreewellwiththecorrespondinglynumberedASTMgrainsizespresentedinTable4.Thiscoincidencemakesthefracturegrainsizesinterchangeablewiththeauste-niticgrainsizesdeterminedmicroscopically.Thesizesob-servedmicroscopicallyshallbeconsideredtheprimarystan-dard,sincetheycanbedeterminedwithmeasuringinstruments.

11.Planimetric(orJeffries’)(3)Procedure

11.1Intheplanimetricprocedureinscribeacircleorrect-angleofknownarea(usually5000mm2tosimplifythecalculations)onamicrographorontheground-glassscreenofthemetallograph.Selectamagnificationwhichwillgiveatleast50grainsinthefieldtobecounted.Whentheimageisfocusedproperly,countthenumberofgrainswithinthisarea.Thesumofallthegrainsincludedcompletelywithintheknownareaplusonehalfthenumberofgrainsintersectedbythecircumferenceoftheareagivesthenumberofequivalentwholegrains,measuredatthemagnificationused,withinthearea.IfthisnumberismultipliedbytheJeffries’multiplier,f,inthesecondcolumnofTable5oppositetheappropriatemagnification,theproductwillbethenumberofgrainspersquaremillimetreNA.Countaminimumofthreefieldsto

10.13ThecomparisonprocedureshallbeapplicableforestimatingtheaustenitegrainsizeinferriticsteelafteraMcQuaid-Ehntest(seeAnnexA3,A3.2),oraftertheaustenitegrainshavebeenrevealedbyanyothermeans(seeAnnexA3,A3.3).Makethegrain-sizemeasurementbycomparingthemicroscopicimage,atmagnificationof100X,withthestan-dardgrainsizechartinPlateIV,forgrainsdevelopedinaMcQuaid-Ehntest(seeAnnexA3);forthemeasurementofaustenitegrainsdevelopedbyothermeans(seeAnnexA3),measurebycomparingthemicroscopicimagewiththeplatehavingthemostnearlycomparablestructureobservedinPlatesI,II,orIV.

10.14Theso-called“ShepherdFractureGrainSizeMethod”ofjudginggrainsizefromtheappearanceofthe

8

AphotographoftheShepherdstandardfracturescanbeobtainedfromASTMHeadquarters.OrderAdjunct:ADJE011224.

6E112–96(2004)e1TABLE5RelationshipBetweenMagnificationUsedandJeffries’

Multiplier,f,foranAreaof5000mm2(aCircleof79.8-mm

Diameter)(f=0.0002M2)

MagnificationUsed,M

110255075A1001502002503005007501000

ATABLE6GrainSizeEquationsRelatingMeasuredParametersto

theMicroscopicallyDeterminedASTMGrainSize,G

Jeffries’Multiplier,f,toObtainGrains/mm20.00020.020.1250.51.1252.04.58.012.518.050.0112.5200.0

NOTE1—DeterminetheASTMGrainSize,G,usingthefollowingequations:

NOTE2—Thesecondandthirdequationsareforsinglephasegrainstructures.

NOTE3—Toconvertmicrometrestomillimetres,divideby1000.NOTE4—AcalculatedGvalueof−1correspondstoASTMG=00.

Equation

¯A)−2.954G=(3.321928log10N

¯L)−3.288G=(6.3856log10N

G=(6.3856log10PL)−3.288G=(−6.3856log10,)−3.288

UnitsNAinmm−2¯Linmm−1N

PLinmm−1,inmm

At75diametersmagnification,Jeffries’multiplier,f,becomesunityiftheareausedis5625mm2(acircleof84.5-mmdiameter).

ensureareasonableaverage.Thenumberofgrainspersquaremillimetreat1X,NA,iscalculatedfrom:

NA5fNInside1

SNIntercepted

2D(4)

wherefistheJeffries’multiplier(seeTable5),NInsideisthenumberofgrainscompletelyinsidethetestcircleandNInterceptedisthenumberofgrainsthatinterceptthetestcircle.

¯,isthereciprocalofNA,thatis,1/NATheaveragegrainarea,A

,whilethemeangraindiameter,d,aslistedonPlateIII(see

¯.Thisgraindiameterhasno10.2.3),isthesquarerootofA

physicalsignificancebecauseitrepresentsthesideofasquare

¯,andgraincrosssectionsarenotsquare.grainofareaA

11.2Toobtainanaccuratecountofthenumberofgrainscompletelywithinthetestcircleandthenumberofgrainsintersectingthecircle,itisnecessarytomarkoffthegrainsonthetemplate,forexample,withagreasepencilorfelttippen.Theprecisionoftheplanimetricmethodisafunctionofthenumberofgrainscounted(seeSection19).Thenumberofgrainswithinthetestcircle,however,shouldnotexceedabout100ascountingbecomestediousandinaccurate.Experiencesuggeststhatamagnificationthatproducesabout50grainswithinthetestcircleisaboutoptimumastocountingaccuracyperfield.Becauseoftheneedtomarkoffthegrainstoobtainanaccuratecount,theplanimetricmethodislessefficientthantheinterceptmethod(seeSection12).

11.3Fieldsshouldbechosenatrandom,withoutbias,asdescribedin5.2.Donotattempttochoosefieldsthatappeartobetypical.Choosethefieldsblindlyandselectthemfromdifferentlocationsontheplaneofpolish.

11.4Byoriginaldefinition,amicroscopically-determinedgrainsizeofNo.1has1.000grains/in.2at100X,hence15.500grains/mm2at1X.Forareasotherthanthestandardcircle,determinetheactualnumberofgrainspersquaremillimetre,NA,andfindthenearestsizefromTable4.TheASTMgrainsizenumber,G,canbecalculatedfromNA(numberofgrainsper2mmat1X)using(Eq1)inTable6.

12.GeneralInterceptProcedures

12.1Interceptproceduresaremoreconvenienttousethantheplanimetricprocedure.Theseproceduresareamenabletousewithvarioustypesofmachineaids.Itisstronglyrecom-9

mendedthatatleastamanualtallycounterbeusedwithallinterceptproceduresinordertopreventnormalerrorsincountingandtoeliminatebiaswhichmayoccurwhencountsappeartoberunninghigherorlowerthananticipated.

12.2Interceptproceduresarerecommendedparticularlyforallstructuresthatdepartfromtheuniformequiaxedform.Foranisotropicstructures,proceduresareavailableeithertomakeseparatesizeestimatesineachofthethreeprincipaldirections,ortorationallyestimatetheaveragesize,asmaybeappropri-ate.

12.3ThereisnodirectmathematicalrelationshipbetweentheASTMgrainsizenumber,G,andthemeanlinealintercept,

¯(Eq1)unliketheexactrelationshipbetweenG,NAE,NAandA

fortheplanimetricmethod.Therelationship

p¯,54A

SD½

(5)

betweenthemeanlinealintercept,,,andtheaveragegrain

¯,isexactforcirclesbutnotquiteexactforastructureofarea,A

uniformequiaxedgrains(seeA2.2.2).Consequently,therela-tionshipbetweentheASTMgrainsizenumberGandthemeanlinealintercepthasbeendefinedsothatASTMNo.0hasameaninterceptsizeofprecisely32.00mmforthemacroscopi-callydeterminedgrainsizescaleandof32.00mmonafieldofviewat100Xmagnificationforthemicroscopicallydeterminedgrainsizescale.Thus:

,0

G52log2—,G510.0022log2,¯LG510.0012log2N

(6)(7)(8)

¯Lareinmillimetresat1Xorwhere,0is32mmand—,andN

numberofinterceptspermmforthemacroscopicallydeter-minedgrainsizenumbersandinmillimetresornumberpermmonafieldat100Xforthemicroscopicallydeterminedgrainsizenumbers.Usingthisscale,measuredgrainsizenumbersarewithinabout0.01Gunitsofgrainsizenumbersdeterminedbytheplanimetricmethod,thatis,wellwithintheprecisionofthetestmethods.AdditionaldetailsconcerninggrainsizerelationshipsaregiveninAnnexA1andAnnexA2.

—12.4Themeaninterceptdistance,,,measuredonaplanesectionisanunbiasedestimateofthemeaninterceptdistancewithinthesolidmaterialinthedirection,orovertherangeof

E112–96(2004)e1directions,measured.Thegrainboundarysurfacearea-to-volumeratioisgivenexactlybySv=2NLwhenNLisaveragedoverthreedimensions.Theserelationsareindependentofgrainshape.

13.Heyn(4)LinealInterceptProcedure

13.1Estimatetheaveragegrainsizebycounting(ontheground-glassscreen,onaphotomicrographofarepresentativefieldofthespecimen,oronthespecimenitself)thenumberofgrainsinterceptedbyoneormorestraightlinessufficientlylongtoyieldatleast50intercepts.Itisdesirabletoselectacombinationoftestlinelengthandmagnificationsuchthatasinglefieldwillyieldtherequirednumberofintercepts.OnesuchtestwillnominallyallowestimationofgrainsizetothenearestwholeASTMsizenumber,atthelocationtested.Additionallines,inapredeterminedarray,shouldbecountedtoobtaintheprecisionrequired.Theprecisionofgrainsizeestimatesbytheinterceptmethodisafunctionofthenumberofgraininterceptionscounted(seeSection19).Becausetheendsofstraighttestlineswillusuallylieinsidegrains(see14.3),precisionwillbereducediftheaveragecountpertestlineislow.Ifpossible,useeitheralongertestlineoralowermagnification.

13.2Makecountsfirstonthreetofiveblindlyselectedandwidelyseparatedfieldstoobtainareasonableaverageforthespecimen.Iftheapparentprecisionofthisaverage(calculatedasindicatedinSection15)isnotadequate,makecountsonsufficientadditionalfieldstoobtaintheprecisionrequiredforthespecimenaverage.

13.3Aninterceptisasegmentoftestlineoverlayingonegrain.Anintersectionisapointwhereatestlineiscutbyagrainboundary.Eithermaybecounted,withidenticalresultsinasinglephasematerial.Whencountingintercepts,segmentsattheendofatestlinewhichpenetrateintoagrainarescoredashalfintercepts.Whencountingintersections,theendpointsofatestlinearenotintersectionsandarenotcountedexceptwhentheendappearstoexactlytouchagrainboundary,when1⁄2intersectionshouldbescored.Atangentialintersectionwithagrainboundaryshouldbescoredasoneintersection.Anintersectionapparentlycoincidingwiththejunctionofthreegrainsshouldbescoredas11⁄2.Withirregulargrainshapes,thetestlinemaygeneratetwointersectionswithdifferentpartsofthesamegrain,togetherwithathirdintersectionwiththeintrudinggrain.Thetwoadditionalintersectionsaretobecounted.

13.4Theeffectsofmoderatedeparturefromanequiaxedstructuremaybeeliminatedbymakinginterceptcountsonalinearraycontaininglineshavingfourormoreorientations.ThefourstraightlinesofFig.57maybeused.Theformofsucharraysisnotcritical,providedthatallportionsofthefieldaremeasuredwithapproximatelyequalweight.Anarrayoflinesradiatingfromacommonpointisthereforenotsuitable.ThenumberofinterceptsistobecountedfortheentirearrayandsinglevaluesofNLand,determinedforeacharrayasawhole.

13.5Fordistinctlynon-equiaxedstructuressuchasmoder-atelyworkedmetals,moreinformationcanbeobtainedbymakingseparatesizedeterminationsalongparallellinearraysthatcoincidewithallthreeprincipaldirectionsofthespeci-men.Longitudinalandtransversespecimensectionsarenor-mallyused,thenormalsectionbeingaddedwhennecessary.Eitherofthe100-mmlinesofFig.5maybeappliedfivetimes,usingparalleldisplacements,placingthefive“+”marksatthesamepointontheimage.Alternatively,atransparenttestgridwithsystematicallyspacedparalleltestlinesofknownlengthcanbemadeandused.

14.CircularInterceptProcedures

14.1UseofcirculartestlinesratherthanstraighttestlineshasbeenadvocatedbyUnderwood(5),Hilliard(6),andAbrams(7).Circulartestarraysautomaticallycompensatefordeparturesfromequiaxedgrainshapes,withoutoverweightinganylocalportionofthefield.Ambiguousintersectionsatendsoftestlinesareeliminated.Circularinterceptproceduresaremostsuitableforuseasfixedroutinemanualproceduresforgrainsizeestimationinqualitycontrol.

14.2HilliardSingle-CircleProcedure(6):

14.2.1Whenthegrainshapeisnotequiaxedbutisdistortedbydeformationorotherprocesses,obtaininganaveragelinealinterceptvalueusingstraighttestlinesrequiresaveragingofvaluesmadeatavarietyoforientations.Ifthisisnotdonecarefully,biasmaybeintroduced.Useofacircleasthetestlineeliminatesthisproblemasthecirclewilltestallorientationsequallyandwithoutbias.

14.2.2Anycirclesizeofexactlyknowncircumferencemaybeused.Circumferencesof100,200,or250mmareusuallyconvenient.Thetestcirclediametershouldneverbesmallerthanthelargestobservedgrains.Ifthetestcircleissmallerthanaboutthreetimesthemeanlinealintercept,thedistributionofthenumberofinterceptsorintersectionsperfieldwillnotbeGaussian.Also,useofsmalltestcirclesisratherinefficientasagreatmanyfieldsmustbeevaluatedtoobtainahighdegreeofprecision.Asmallreferencemarkisusuallyplacedatthetopofthecircletoindicatetheplacetostartandstopthecount.Blindlyapplytheselectedcircletothemicroscopeimageataconvenientknownmagnificationandcountthenumberofgrainboundariesintersectingthecircleforeachapplication.Applythecircleonlyoncetoeachfieldofview,addingfieldsinarepresentativemanner,untilsufficientcountsareobtainedtoyieldtherequiredprecision.Thevariationincountspertestcircleapplicationdecreasesasthecirclesizeincreasesand,ofcourse,isaffectedbytheuniformityofthegrainsizedistribu-tion.

14.2.3Aswithallinterceptprocedures,theprecisionofthemeasurementincreasesasthenumberofcountsincreases(seeSection19).Theprecisionisbasedonthestandarddeviationofthecountsofthenumberofinterceptsorintersectionsperfield.Ingeneral,foragivengrainstructure,thestandarddeviationisimprovedasthecountpercircleapplicationandthetotalcount(thatis,thenumberofapplications)increase.Hilliardrecom-mendedtestconditionsthatproduceabout35countspercirclewiththetestcircleappliedblindlyoveraslargeaspecimenareaasfeasibleuntilthedesiredtotalnumberofcountsisobtained.

10

Atrue-sizetransparencyofFig.5isavailablefromASTMHeadquarters.OrderAdjunct:ADJE11217F.

7E112–96(2004)e1NOTE1—Ifreproducedtomakestraightlinesmarkedlength:Straightlinestotal:500mm

Circlesare:

Circumference,mm,

250.0166.783.3Total500.0

Diameter,mm

79.5853.0526.53

NOTE2—SeeFootnote9.

FIG.5TestPatternforInterceptCounting

14.3AbramsThree-CircleProcedure(7):

14.3.1Basedonanexperimentalfindingthatatotalof500countsperspecimennormallyyieldsacceptableprecision,Abramsdevelopedaspecificprocedureforroutineaveragegrainsizeratingofcommercialsteels.Useofthechi-squaretestonrealdatademonstratedthatthevariationofinterceptcountsisclosetonormal,allowingtheobservationstobetreatedbythestatisticsofnormaldistributions.Thusbothameasureofvariabilityandtheconfidencelimitoftheresultarecomputedforeachaveragegrainsizedetermination.

14.3.2Thetestpatternconsistsofthreeconcentricandequallyspacedcircleshavingatotalcircumferenceof500mm,asshowninFig.5.Successivelyapplythispatterntoatleastfiveblindlyselectedandwidelyspacedfields,separatelyrecordingthecountofintersectionsperpatternforeachofthetests.Then,determinethemeanlinealintercept,itsstandarddeviation,95%confidencelimit,andpercentrelativeaccuracy.

11

Formostwork,arelativeaccuracyof10%orlessrepresentsanacceptabledegreeofprecision.Ifthecalculatedrelativeaccuracyisunacceptablefortheapplication,countadditionalfieldsuntilthecalculatedpercentrelativeaccuracyisaccept-able.Thespecificprocedureisasfollows:

14.3.2.1Examinethegrainstructureandselectamagnifi-cationthatwillyieldfrom40to100interceptsorintersectioncountsperplacementofthethreecircletestgrid.Becauseourgoalistoobtainatotalofabout400to500counts,theidealmagnificationisthatwhichyieldsabout100countsperplacement.However,asthecountperplacementincreasesfrom40to100,errorsincountingbecomemorelikely.Becausethegrainstructurewillvarysomewhatfromfieldtofield,atleastfivewidelyspacedfieldsshouldbeselected.Somemetallographersfeelmorecomfortablecounting10fieldswithabout40to50countsperfield.Formostgrainstructures,atotalcountof400to500interceptsorintersections

E112–96(2004)e1TABLE795%ConfidenceInternalMultipliers,t

No.ofFields,n

567101112

t2.7762.5712.4472.3652.3062.2622.2282.201

No.ofFields,n

1314151617181920

t2.1792.1602.1452.1312.1202.1102.1012.093

FIG.6AverageInterceptCountson500mmTestPattern

over5to10fieldsproducesbetterthan10%relativeaccuracy.Fig.6showstherelationshipbetweentheaverageinterceptcountandthemicroscopicallydeterminedASTMgrainsizenumberasafunctionofmagnification.

14.3.2.2Blindlyselectonefieldformeasurementandapplythetestpatterntotheimage.Atransparencyofthepatternmaybeapplieddirectlytothegroundglass,ortoaphotomicrographwhenpermanentrecordsaredesired.Directcountingusingaproperlysizedreticleintheeyepieceisallowable,butitmayherebeexpectedthatsomeoperatorswillfinddifficultyincountingcorrectlyatthecountdensityrecommended.Com-pletelycounteachcircleinturn,usingamanuallyoperatedcountertoaccumulatethetotalnumberofgrainboundaryintersectionswiththetestpattern.Themanualcounterisnecessarytoavoidbiastowardunrealagreementbetweenapplicationsortowardadesiredresult,andtominimizememoryerrors.Theoperatorshouldavoidkeepingamentalscore.Whenatallycounterisused,scoreanyintersectionofthecirclewiththejunctionofthreegrainsastworatherthanthecorrectvalueof11⁄2;theerrorintroducedisverysmall.14.3.3Foreachfieldcount,calculateNLorPLaccordingto:

N¯L5iNL/MP¯L5iPL/M(9)(10)

15.StatisticalAnalysis

15.1Nodeterminationofaveragegrainsizecanbeanexactmeasurement.Thus,nodeterminationiscompletewithoutalsocalculatingtheprecisionwithinwhichthedeterminedsizemay,withnormalconfidence,beconsideredtorepresenttheactualaveragegrainsizeofthespecimenexamined.Inaccordancewithcommonengineeringpractice,thissectionassumesnormalconfidencetorepresenttheexpectationthattheactualerrorwillbewithinthestateduncertainty95%ofthetime.

15.1.1Manyspecimensvarymeasurablyingrainsizefromonefieldofviewtoanother,thisvariationbeingresponsibleforamajorportionoftheuncertainty.Minimumeffortinmanualmethods,toobtainarequiredprecision,justifiesindividualcountswhoseprecisioniscomparabletothisnaturalvariability(6).Thehighlocalprecisionthatmaybeobtainedbymachinemethodsoftenwillyieldonlyasmallincreaseinoverallprecisionunlessmanyfieldsalsoaremeasured,butdoeshelpdistinguishnaturalvariabilityfrominaccuraciesofcounting.15.2Afterthedesirednumberoffieldshavebeenmeasured,

¯Aor—,fromtheindividualfieldcalculatethemeanvalueofN

valuesaccordingto:

(Xi¯5Xn(12)

¯isthemeanandnwhereXirepresentsanindividualvalue,X

isthenumberofmeasurements.

15.3Calculatethestandarddeviationoftheindividualmeasurementsaccordingtotheusualequation:

¯!2(~Xi2X

s5n21FG½

(13)

whereNiandPiarethenumberofinterceptsorintersections

countedonthefield,Listhetotaltestlinelength(500mm)andMisthemagnification.

14.3.4Calculatethemeanlinealinterceptvalueforeachfield,—,by:

11—,5¯5¯NLPL

(11)

wheresisthestandarddeviation.

15.4Calculatethe95%confidenceinterval,95%CI,ofeachmeasurementaccordingto:

95%CI5

t·s=n(14)

wherethe·indicatesamultiplicationoperation.Table7listsvaluesoftasafunctionofn.

15.5Calculatethepercentrelativeaccuracy,%RA,ofthemeasurementsbydividingthe95%CIvaluebythemeanandexpressingtheresultsasapercentage,thatis:

%RA5

95%CI

·100¯X

(15)

TheaveragevalueofndeterminationsofNL,PL,or—,is

usedtodeterminethemicroscopicallymeasuredASTMgrainsizeusingtheequationsinTable6,thedatashowngraphicallyinFig.6,orthedatainTable4.

12

15.6Ifthe%RAisconsideredtobetoohighfortheintendedapplication,morefieldsshouldbemeasuredandthe

E112–96(2004)e1calculationsin15.1-15.5shouldberepeated.Asageneralrule,a10%RA(orlower)isconsideredtobeacceptableprecisionformostpurposes.

¯Aor—15.7ConvertthemeanvalueofN,totheASTMgrain

sizenumber,G,usingTable4ortheEqsinTable6.16.SpecimenswithNon-equiaxedGrainShapes

16.1Ifthegrainshapewasalteredbyprocessingsothatthegrainsarenolongerequiaxedinshape,grainsizemeasure-mentsshouldbemadeonlongitudinal(,),transverse(t)andplanar(p)orientedsurfacesforrectangularbar,plateorsheettypematerial.Forroundbars,radiallongitudinalandtrans-versesectionsareused.Ifthedeparturefromequiaxedisnottoogreat(see16.2.2),areasonableestimateofthegrainsizecanbedeterminedusingalongitudinalspecimenandthecirculartestgrid.Ifdirectedtestlinesareusedfortheanalysis,measurementsinthethreeprincipaldirectionscanbemadeusingonlytwoofthethreeprincipaltestplanes.16.2PlanimetricMethod:

16.2.1Whenthegrainshapeisnotequiaxedbutelongated,makegraincountsoneachofthethreeprincipalplanes,thatis,planesofpolishonlongitudinal,transverseandplanar-orientedsurfaces.Determinethenumberofgrainspermm2at1Xonthe

¯A,,N¯Atlongitudinal,transverse,andplanarorientedsurfaces,N

¯Ap,respectively,andcalculatethemeannumberofgrainsandN

¯A,fromthethreeN¯Avaluesfromtheprincipalperunitarea,N

planes:

¯5~N¯A,·N¯At·N¯Ap!1/3N

(16)

where·indicatesamultiplicationoperationandthebar

aboveeachquantityindicatesanaveragevalue.

16.2.2Areasonableestimateofthegrainsizecanbemade¯A,aloneifthedeparturefromanequiaxedshapeisnotfromN

excessive(#3:1aspectratio).

¯Afromthe16.2.3CalculateGfromthemeanvalueofN

averagesmadeoneachfield.Performthestatisticalanalysis(15.1-15.5)onlyontheindividualmeasurementsoneachfield.16.3InterceptMethod:

16.3.1Toassessthegrainsizeofnon-equiaxedgrainstructures,measurementscanbemadeusingcirculartestgridsorrandomlyplacedtestlinesoneachofthethreeprincipaltestplanes,orbyuseofdirectedtestlinesineitherthreeorsixoftheprincipaldirectionsusingeithertwoorthreeoftheprincipaltestplanes,seeFig.7.Forspecimenswherethedeparturefromanequiaxedshapeisnotsevere(#3:1aspectratio),areasonableestimateofthegrainsizecanbemadeusingacirculartestgridonthelongitudinalplaneonly.

16.3.2Thegrainsizecanbedeterminedfrommeasurementsofthemeannumberofgrainboundaryintersectionsperunit

¯L,orthemeannumberofgrainsinterceptedperunitlength,P

¯L.Bothmethodsyieldthesameresultsforasinglelength,N

¯LorN¯Lcanbedeterminedusingeitherphasegrainstructure.P

testcirclesoneachoftheprincipalplanesordirectedtestlinesineitherthreeorsixoftheprincipaltestdirectionsshowninFig.7.

NOTE1—Measurementsofrectangularbar,plate,striporsheettypespecimenswithnon-equiaxedgrainstructures.

FIG.7SchematicShowingtheSixPossibleDirectedTestLine

OrientationsforGrainSizeMeasurement

¯Lor16.3.3ForthecaseofrandomlydeterminedvaluesofP

¯Lonthethreeprincipalplanes,computetheaveragevalueN

accordingto:

¯5~P¯L,·P¯Lt·P¯Lp!1/3P

(17)

13

E112–96(2004)e1or

¯5~N¯L,·N¯Lt·N¯Lp!1/3N

(18)

——¯LorN¯LAlternatively,calculate,,,,tand,pfromtheP

valuesoneachplaneusing(Eq11).Then,calculatetheoverall

—meanvalueof,from:

—,5~—,,·—,t·—,p!1/3

(19)

16.3.4Ifdirectedtestlinesareusedintheprincipaldirec-tionsontheprincipalplanes,onlytwooftheprincipalplanes

arerequiredtoperformdirectedcountsinthethreeprincipaldirectionsandobtainanestimateofthegrainsize.

16.3.5Additionalinformationongrainshapemaybeob-—tainedbydetermining,parallel(0°)andperpendicular(90°)tothedeformationaxisonalongitudinallyorientedsurface.Thegrainelongationratio,ortheanisotropyindex,AI,canbedeterminedfrom:

——AI,5,,~0°!/,,~90°!

(20)

16.3.5.1Thethree-dimensionalmeangrainsizeandshapemayalsobedefinedbythedirectedmeanlinealinterceptvaluesonthethreeprincipalplanes.Thesevalueswouldbeexpressedas:

—,,~0°!:—,,~90°!:—,,~90°!

(21)

16.3.5.2Anotherapproachthatcanbeusedistonormalize

thethreeresultsbydividingeachbythevalueofthesmallestwiththeresultsexpressedasratios.16.3.6Themeanvalueof—,forthemeasurementsinthethreeprincipaltestdirectionsisobtainedbyaveragingthe

¯Lvalues(asshownin(Eq22))andthen¯L,orPdirectedN

—computing,fromthismeanvalue;or,bycalculatingdirected—,valuesineachofthethreeprincipaldirectionsandthenaveragingthemaccordingto(Eq23):

¯L,~0°!·P¯Lt~90°!·P¯Lp~90°!!1/3¯P5~P

(22)

¯L.ForcomputingthegrandThisisdoneinlikemannerforN

mean—,fromthedirectedmeanvalues,use:

,5~—,,~0°!·—,t~90°!·—,p~90°!!1/3

(23)

Unlessstatedotherwise,theeffectiveaveragegrainsizeshall

bepresumedtobethesizeofthematrixphase.

17.2Theidentityofeachmeasuredphaseandthepercent-ageoffieldareaoccupiedbyeachphaseshallbedeterminedandreported.ThepercentageofeachphasecanbedeterminedaccordingtoPracticeE562.

17.3ComparisonMethod—Thecomparisonchartratingproceduremayprovideacceptableprecisionformostcommer-cialapplicationsifthesecondphase(orconstituent)consistsofislandsorpatchesofessentiallythesamesizeasthematrixgrains;or,theamountandsizeofthesecondphaseparticlesarebothsmallandtheparticlesarelocatedprimarilyalonggrainboundaries.

17.4PlanimetricMethod—Theplanimetricmethodmaybeappliedifthematrixgrainboundariesareclearlyvisibleandthesecondphase(constituent)particlesaremainlypresentbetweenthematrixgrainsratherthanwithinthegrains.Determinethepercentageofthetestareaoccupiedbythesecondphase,forexample,byPracticeE562.Alwaysdeter-minetheamountofthephaseofleastconcentration,usuallythesecondphaseorconstituent.Then,determinethematrixphasebydifference.Next,countthenumberofmatrixgrainscompletelywithinthetestareasandthenumberofmatrixgrainsintersectingthetestareaboundary,asdescribedinSection11.Thetestareamustbereducedtothatcoveredonlybythematrixphasegrains.Theeffectiveaveragegrainsizeisthendeterminedfromthenumberofgrainsperunitnetareaofthematrixphase.Statisticallyanalyzethenumberofgrainsperunitareaoftheamatrixphase,NAa,fromeachfieldmeasurementusingtheapproachdescribedinSection15.

¯Aa,determinetheeffectiveThen,fromtheoverallaverage,N

grainsizeofthematrixusingTable4ortheappropriateequationinTable6.

17.5InterceptMethod—Thesamerestrictionsregardingapplicability,asstatedin17.4,pertaintothismethod.Again,theamountofthematrixphasemustbedetermined,asdescribedin17.4.Atestgridconsistingofoneormoretestcircles,suchasshowninFig.5,isused.Forthisapplication,countthenumberofmatrixgrains,Na,interceptedbythetestline.Determinethemeaninterceptlengthofthematrixphaseaccordingto:

~VVa!~L/M!—,a5Na

wherethe·indicatesamultiplicationoperation.

16.3.7Themeangrainsizeisdeterminedfromtheoverall

¯Lor,usingTable4ortheequationsinTable¯L,NaveragesofP

6.Additionalinformationonthemeasurementofgrainsizefornon-equiaxedstructurescanbefoundinAnnexA1ofTestMethodsE1382.

16.4Statisticalanalysisshouldbeperformedonthedatafromeachplaneoreachprincipaltestdirectionaccordingtotheprocedurein15.1-15.5.

17.SpecimensContainingTwoorMorePhasesor

Constituents

17.1Minoramountsofsecondphaseparticles,whetherdesireableorundesireablefeatures,maybeignoredinthedeterminationofgrainsize,thatis,thestructureistreatedasasinglephasematerialandthepreviouslydescribedplanimetricorinterceptmethodsareusedtodeterminethegrainsize.

14

(24)

wherethevolumefractionoftheamatrix,VVa,isexpressedasafraction,ListhetestlinelengthandMisthemagnifica-tion.ThegrainsizeoftheagrainsisdeterminedusingTable4ortheequationinTable6.Inpractice,itisinconvenienttomanuallydeterminethevolumefractionoftheaphaseandthenumberofagrainsinterceptingthetestlineforeachfield.Ifthisisdone,themeanlinealinterceptlengthoftheaphaseforeachfieldcanbedeterminedandthisdatacanbestatisticallyanalyzedforeachfieldaccordingtotheproceduredescribedinSection15.IfVVaandNaarenotmeasuredsimultaneouslyforthesamefields,thenthestatisticalanalysiscanonlybeperformedontheVVaandNadata.

17.6Itisalsopossibletodetermine—,bymeasurementofindividualinterceptlengthsusingparallelstraighttestlinesappliedrandomlytothestructure.Donotmeasurethepartial

aE112–96(2004)e1interceptsattheendsofthetestlines.Thismethodisrathertediousunlessitcanbeautomatedinsomeway.TheindividualinterceptsareaveragedandthisvalueisusedtodetermineGfromTable4ortheequationinTable6.Theindividualinterceptsmaybeplottedinahistogram,butthisisbeyondthescopeofthesetestmethods.

18.Report

18.1Thetestreportshoulddocumentallofthepertinentidentifyinginformationregardingthespecimen,itscomposi-tion,specificationdesignationortradename,customerordatarequester,dateoftest,heattreatmentorprocessinghistory,specimenlocationandorientation,etchantandetchmethod,grainsizeanalysismethod,andsoforth,asrequired.

18.2Listthenumberoffieldsmeasured,themagnification,andfieldarea.Thenumberofgrainscountedorthenumberofinterceptsorintersectionscounted,mayalsoberecorded.Foratwo-phasestructure,listtheareafractionofthematrixphase.18.3Aphotomicrographillustratingthetypicalappearanceofthegrainstructuremaybeprovided,ifrequiredordesired.18.4Listthemeanmeasurementvalue,itsstandarddevia-tion,95%confidenceinterval,percentrelativeaccuracy,andtheASTMgrainsizenumber.

18.4.1Forthecomparisonmethod,listonlytheestimatedASTMgrainsizenumber.

18.5Foranon-equiaxedgrainstructure,listthemethodofanalysis,planesexamined,directionsevaluated(ifapplicable),thegrainsizeestimateperplaneordirection,thegrandmeanoftheplanarmeasurements,andthecomputedorestimatedASTMgrainsizenumber.

18.6Foratwo-phasestructure,listthemethodofanalysis,theamountofthematrixphase(ifdetermined),thegrainsizemeasurementofthematrixphase(andthestandarddeviation,95%confidenceinterval,andpercentrelativeaccuracy),andthecomputedorestimatedASTMgrainsizenumber.

18.7Ifitisdesiredtoexpresstheaveragegrainsizeofagroupofspecimensfromalot,donotsimplyaveragetheASTMgrainsizenumbers.Instead,computeanarithmetic

¯Aor,valuesaverageoftheactualmeasurements,suchas,theN

perspecimen.Then,fromthelotaverage,calculateorestimate

¯AortheASTMgrainsizeforthelot.ThespecimenvaluesofN

,mayalsobestatisticallyanalyzed,accordingtotheapproachinSection15,toevaluatethegrainsizevariabilitywithinthelot.

19.PrecisionandBias

19.1Theprecisionandbiasofgrainsizemeasurementsdependontherepresentativenessofthespecimensselectedandtheareasontheplane-of-polishchosenformeasurement.Ifthegrainsizevarieswithinaproduct,specimenandfieldselectionmustadequatelysamplethisvariation.

19.2Therelativeaccuracyofthegrainsizemeasurementoftheproductimprovesasthenumberofspecimenstakenfromtheproductincreases.Therelativeaccuracyofthegrainsizemeasurementofeachspecimenimprovesasthenumberoffieldssampledandthenumberofgrainsorinterceptscountedincrease.

19.3Biasinmeasurementswilloccurifspecimenprepara-tionisinadequate.Thetruestructuremustberevealedandthe

15

grainboundariesmustbefullydelineatedforbestmeasurementprecisionandfreedomfrombias.Asthepercentageofnon-delineatedgrainboundariesincreases,biasincreasesandpre-cision,repeatability,andreproducibilitybecomepoorer.

19.4Inaccuratedeterminationofthemagnificationofthegrainstructurewillproducebias.

19.5Ifthegrainstructureisnotequiaxedinshape,forexample,ifthegrainshapeiselongatedorflattenedbydeformation,measurementofthegrainsizeononlyoneplane,particularlytheplaneperpendiculartothedeformationdirec-tion,willbiastestresults.Grainshapedistortionisbestdetectedusingatestplaneparalleltothedeformationdirection.Thesizeofthedeformedgrainsshouldbebasedonmeasure-mentsmadeontwoorthreeoftheprincipalplaneswhichareaveragedasdescribedinSection16.

19.6Specimenswithaunimodalgrainsizedistributionaremeasuredforaveragegrainsizeusingthemethodsdescribedinthesetestmethods.Specimenswithbimodal(ormorecom-plex)sizedistributionsshouldnotbetestedusingamethodthatyieldsasingleaveragegrainsizevalue;theyshouldbecharacterizedusingthemethodsdescribedinTestMethodsE1181andmeasuredusingthemethodsdescribedinTestMethodsE112.ThesizeofindividualverylargegrainsinafinegrainedmatrixshouldbedeterminedusingTestMethodsE930.

19.7Whenusingthecomparisonchartmethod,thechartselectedshouldbeconsistentwiththenatureofthegrains(thatis,twinnedornon-twinned,orcarburizedandslowcooled)andtheetch(thatis,flatetchorgraincontrastetch)forbestprecision.

19.8Grainsizeratingsusingthecomparisonchartmethodbyanindividualmetallographerwillvarywithin60.5Gunits.Whenanumberofindividualsratethesamespecimen,thespreadinratingsmaybeasgreatas1.5to2.5Gunits.

19.9Thefracturegrainsizemethodisonlyapplicabletohardened,relativelybrittle,toolsteels.Specimensshouldbeintheas-quenchedorlightlytemperedconditionsothatthefracturesurfaceisquiteflat.Anexperiencedmetallographercanratetheprior-austenitegrainsizeofatoolsteelwithin60.5GunitsbytheShepherdfracturegrainsizemethod.19.10Aroundrobintestprogram(seeAppendixX1),analyzedaccordingtoPracticeE691,revealedarathercon-sistentbiasbetweencomparisonchartratingsusingPlateIandgrainsizemeasurementsusingboththeplanimetricandinter-ceptmethods.Chartratingswere0.5to1Gunitcoarser,thatis,lowerGnumbers,thanthemeasuredvalues.

19.11Grainsizesdeterminedbyeithertheplanimetricorinterceptmethodsproducedsimilarresultswithnoobservedbias.

19.12Therelativeaccuracyofgrainsizemeasurementsimprovedasthenumberofgrainsorinterceptscountedincreased.Forasimilarnumberofcounts,therelativeaccuracyofinterceptmeasurementswasbetterthanthatofplanimetricmeasurementsofgrainsize.Fortheinterceptmethod,10%RA(orless)wasobtainedwithabout400interceptorinter-sectioncountswhilefortheplanimetricmethod,toobtain10%RA,orless,about700grainshadtobecounted.Repeatabilityandreproducibilityofmeasurementsimprovedasthenumber

E112–96(2004)e1ofgrainsorinterceptscountedincreasedandwasbetterfortheinterceptmethodthanfortheplanimetricmethodforthesamecount.

19.13Theplanimetricmethodrequiresamarkingoffofthegrainsduringcountinginordertoobtainanaccuratecount.Theinterceptmethoddoesnotrequiremarkinginordertogetanaccuratecount.Hence,theinterceptmethodiseasiertouseandfaster.Further,theroundrobintestshowedthattheinterceptmethodprovidesbetterstatisticalprecisionforthesamenumberofcountsandis,therefore,thepreferredmeasurementmethod.

19.14Anindividualmetallographercanusuallyrepeatplanimetricorinterceptgrainsizemeasurementswithin60.1Gunits.Whenanumberofmetallographersmeasurethesamespecimen,thespreadofgrainsizesisusuallywellwithin60.5Gunits.

20.Keywords

20.1ALAgrainsize;anisotropyindex;areafraction;ASTMgrainsizenumber;calibration;equiaxedgrains;etchant;grainboundary;grains;grainsize;interceptcount;interceptlength;intersectioncount;non-equiaxedgrains;twinboundaries

ANNEXES

(MandatoryInformation)

A1.BASISOFASTMGRAINSIZENUMBERS

A1.1DescriptionsofTermsandSymbols

A1.1.1Thegeneraltermgrainsizeiscommonlyusedtodesignatesizeestimatesormeasurementsmadeinseveralways,employingvariousunitsoflength,area,orvolume.Ofthevarioussystems,onlytheASTMgrainsizenumber,G,isessentiallyindependentoftheestimatingsystemandmeasure-mentunitsused.TheequationsusedtodetermineGfromrecommendedmeasurements,asillustratedinFig.6andTable2andTable4,aregiveninA1.2andA1.3.ThenominalrelationshipsbetweencommonlyusedmeasurementsaregiveninAnnexA2.Measurementsthatappearintheseequations,orinequationsinthetext,areasfollows:

A1.1.1.1N=Numberofgrainsectionscountedonaknowntestarea,A,ornumberofinterceptscountedonaknowntestarrayoflength=L,atsomestatedmagnification,

¯.M.TheaverageofcountsonseveralfieldsisdesignatedasN

A1.1.1.2Aftercorrectionformagnification,NAisthenum-berofgrainsectionsperunittestarea(mm2)at1X;NListhenumberofgrainsinterceptedperunitlength(mm)oftestlinesat1X;andPListhenumberofgrainboundaryintersectionsperunitlength(mm)oftestlineat1X.

A1.1.1.3—,=1/NL=1/PLwhere,isthemeanlinealinterceptlengthinmmat1X.

¯isthemeanareaofthegrain¯=1/NAwhereAA1.1.1.4A

sections(mm2)at1X.Themeangraindiameter,d,isthe

¯.GrainsizevaluesonPlateIIIareexpressedinsquarerootofA

termsofd¯.NotethatTable2liststheequivalentASTMgrainsizenumberforeachchartpictureandforseveraldifferentmagnifications.

A1.1.1.5Theletters,,tandpareusedassubscriptswhenassessingthegrainsizeofspecimenswithnon-equiaxedgrainstructures.Thethreesubscriptsrepresenttheprincipalplanesforrectangularbar,plate,sheet,orstripspecimens,thatis,thelongitudinal(,),transverse(t)andplanar(p)surfaces.Theyaremutuallyperpendiculartoeachother.Oneachplane,therearetwoprincipaldirectionsthatareperpendiculartoeachother(asillustratedinFig.7).

A1.1.1.6Thenumberoffieldsmeasuredisdesignatedbyn.

16

A1.1.1.7Otherspecificdesignationsaredefinedbyequa-tionswhichfollow.

A1.2InterceptMethods:A1.2.1Metricunits,—,inmillimetresat100Xformicro-scopicallydeterminedgrainsizesand—,mat1Xformacro-scopicallydeterminedgrainsizes,areusedwiththefollowing

——

equationrelating,or,mtoG.Formacroscopicallydeter-—minedgrainsizes,,misinmmat100X:

,0

G52log2—,m

(A1.1)

forG=0,,0isestablishedas32.00andlog2,0=5.

G5110.00022log2,m—

G5110.000026.39log10,m

(A1.2)(A1.3)

Formicroscopicallydeterminedgrainsizes,,¯isinmillime-tresat1Xand:

G5–3.287726.39log10—,¯LG5–3.287712log2N¯LG5–3.287716.39log10N

(A1.4)(A1.5)(A1.6)

¯LisdeterminedinsteadofN¯L,substituteP¯LforN¯LinEqIfP

A1.5andEqA1.6.

A1.3PlanimetricMethod:

¯AEinnumberpersquareinchesatA1.3.1Englishunits,N

100Xformicroscopicallydeterminedgrainsizesandat1Xformacroscopicallydeterminedgrainsizes,areusedwiththe

¯AEtoG:followingequationsrelatingN

¯AEG51.0001log2N¯AEG51.00013.3219log10N

(A1.7)(A1.8)

¯AisexpressedintermsofthenumberofgrainspersquareIfN

millimetresat1X,formicroscopicallydeterminedgrainsizes,then:

E112–96(2004)e1¯AG52.954213.3219log10N

(A1.9)

A2.EQUATIONSFORCONVERSIONSAMONGVARIOUSGRAINSIZEMEASUREMENTS

A2.1ChangeofMagnification—Iftheapparentgrainsize

hasbeenobservedatmagnificationM,butdeterminedasifatthebasicmagnificationMb(100Xor1X),thenthesizevalueatthebasicmagnificationisasfollows:A2.1.1PlanimetricCount:

NA5NA0~M/Mb!2

(A2.1)

¯51/NAA

(A2.7)

¯istheaveragegraincrosssectionalarea.whereA

A2.2.2InterceptWidthofaCircularGrainSection:

p—¯,54A

SD1/2

(A2.8)

whereNA0isthenumberofgrainsperunitareaat

magnificationMb.

A2.1.2InterceptCount:

Ni5Ni0~M/Mb!

(A2.2)

Themeaninterceptdistanceforpolygonalgrainsvariesaboutthistheoreticalvalue,beingdecreasedbyanisotropybutincreasedbyarangeofsectionsizes.Thewidthcomputedby(EqA2.8)is0.52%smallerthanthewidthassignedtoGby(EqA1.4)inA1.2.1(D=+0.015ASTMNo.).

A2.3Otherusefulsizeindicationsaregivenbythefollow-ingequations:

¯,ofsimilarsizeA2.3.1Thevolumetric(spatial)diameter,D

spheresinspaceis:

¯51.5—D,

(A2.9)

whereNi0isthenumberofgrainsinterceptedbythetestline

(theequationforPiandPi0isthesame)atmagnificationMb.A2.1.3AnyLength:

,¯5,¯0Mb/M

(A2.3)

where,¯0isthemeanlinealinterceptatmagnificationMb.

A2.1.4ASTMGrainSizeNumber:

G5G01Q

(A2.4)

where:

Q=2log2(M/Mb)

=2(log2M−log2Mb)

=6.39(log10M−log10Mb)

whereG0istheapparentASTMgrainsizenumberatmagnificationMb.

A2.1.5Grainspermm2at1Xfromgrainsperin.2at100X:

NA5NAE~100/25.4!2

NA515.5NAE

(A2.5)(A2.6)

Similarrelationshipsbetween—,,determinedonthetwo-¯,havedimensionalplaneofpolish,andthespatialdiameter,D

beenderivedforavarietyofpotentialgrainshapes,andvariousassumptionsabouttheirsizedistribution.Anumberofformu-lae,suchasequation(EqA2.7),havebeenproposedwithdifferentmultiplyingfactors.Areasonableestimateofthe

¯,baseduponthetetrakaidecahedronshapespatialdiameter,D

modelandagrainsizedistributionfunction(8),is:

¯D51.571,¯

(A2.10)

whereNAisthenumberofgrainspermm2at1XandNAEis

thenumberofgrainsperin.2at100X.

A2.2Othermeasurementsshowninthetablesmaybecomputedfromthefollowingequations:A2.2.1AreaofAverageGrain:

A2.3.2Forasinglephasemicrostructure,thegrainbound-arysurfaceareaperunitvolume,SV,hasbeenshowntobeanexactfunctionofPLorNL:

SV52PL52NL

(A2.11)

whileforatwophasemicrostructure,thephaseboundarysurfaceareaperunitvolumeoftheaphase,SVa,is:

SVa52PL54NL

(A2.12)

A3.AUSTENITEGRAINSIZE,FERRITICANDAUSTENITICSTEELS

A3.1Scope

A3.1.1Becauseitissometimesnecessarytosubjectmate-rialtospecialtreatmentsortechniquesinordertodevelopcertaingraincharacteristicspriortotheestimationofgrainsize,theessentialdetailsofthesetreatmentsaresetforthinthefollowingsections.

A3.2EstablishingAusteniteGrainSize

A3.2.1FerriticSteels—Unlessotherwisespecified,auste-nitegrainsizeshallbeestablishedbyoneofthefollowingprocedures:

NOTEA3.1—Theindicationsofcarboncontentsintheprocedureheadingsareadvisoryonly.Numerousmethodsareinuseforestablishingaustenitegrainsize,andaknowledgeofgraingrowthandgraincoarsen-ingbehaviorishelpfulindecidingwhichmethodtouse.Thesizeofaustenitegrains,inanyparticularsteel,dependsprimarilyonthetempera-turetowhichthatsteelisheatedandthetimeitisheldatthetemperature.Itshouldberememberedthattheatmosphereinheatingmayaffectthegraingrowthattheoutsideofthepiece.Austenitegrainsizeisalsoinfluencedbymostprevioustreatmentstowhichthesteelmayhavebeensubjectedas,forexample,austenitizingtemperature,quenching,normal-izing,hotworking,andcoldworking.Itisthereforeadvisable,when

17

E112–96(2004)e1testingforaustenitegrainsize,toconsidertheeffectsofpriororsubsequenttreatments,orboth,ontheprecisepiece(ortypicalpiece)thatisunderconsideration.

A3.2.1.1CorrelationProcedure(CarbonandAlloySteels)—Testconditionsshouldcorrelatewiththeactualheat-treatmentcycleusedtodevelopthepropertiesforactualservice.Heatthespecimensatatemperaturenotover50°F(28°C)abovethenormalheat-treatingtemperatureandfornotover50%morethanthenormalheat-treatingtimeandundernormalheat-treatingatmosphere,thenormalvaluesbeingthosemutuallyagreedupon.Therateofcoolingdependsonthemethodoftreatment.MakethemicroscopicalexaminationincompliancewithTable1.

A3.2.1.2CarburizingProcedure(CarbonandAlloySteels;CarbonGenerallyBelow0.25%)—ThisprocedureisusuallyreferredtoastheMcQuaid—EhnTest.Unlessotherwisespecified,carburizethespecimensat1700625°F(927614°C)for8horuntilacaseofapproximately0.050in.(1.27mm)isobtained.Thecarburizingcompoundmustbecapableofproducingahypereutectoidcaseinthetimeandatthetemperaturespecified.Furnacecoolthespecimentoatempera-turebelowthelowercriticalatarateslowenoughtoprecipitatecementiteintheaustenitegrainboundariesofthehypereutec-toidzoneofthecase.Whencool,sectionthespecimentoprovideafresh-cutsurface,polish,andsuitablyetchtorevealthegrainsizeofthehypereutectoidzoneofthecase.MakeamicroscopicalexaminationincompliancewithTable1.WhiletheMcQuaid-Ehntestwasdesignedforevaluatingthegraingrowthcharacteristicsofsteelsintendedforcarburizingappli-cations,usuallysteelswith<0.25%carbon,itisfrequentlyusedtoevaluatesteelswithhighercarboncontentsthatwillnotbecarburized.Itmustberecognizedthatthegrainsizeofsuchsteelswhenheattreatedfromaustenitizingtemperaturesbelow1700°FmaybefinerinsizethanthatobtainedbytheMcQuaid-Ehntest.

A3.2.1.3MockCarburizingProcedure—TheheattreatmentdescribedinA3.2.1.2isperformedbutacarburizingatmo-sphereisnotusedandthespecimenmustbequenchedfromthemockcarburizingtemperatureataratefastenoughtoformmartensite,ratherthanslowlycooledaftercarburizing.Thespecimenissectioned(carefulabrasivecut-offcuttingisrequiredtopreventburning),polishedandetchedwithareagentthatwillrevealtheprior-austenitegrainboundaries(suchassaturatedaqueouspicricacidwithawettingagent,seePracticeE407).MockcarburizingissometimespreferredbecausethedepthofthecarburizedcaseproducedbytheMcQuaid-Ehntestmaybequitethinwithsomesteels.Withamockcarburizedspecimen,allofthegrainsonthecrosssectioncanbeexamined.Problemssuchasbandedgrainsize,duplexorALAgrains(seeTestMethodsE1181)aremoreeasilydetectedwithamockcarburizedspecimenduetothemuchgreatersurfaceareaforexamination.

A3.2.1.4HypoeutectoidSteels(CarbonandAlloySteels0.25to0.60%Carbon)—Unlessotherwisespecified,heatspecimensofsteelswithacarboncontentof0.35%orlessat1625625°F(885614°C);heatspecimensofsteelwithacarboncontentofover0.35%at1575625°F(857614°C)foraminimumof30minandcoolinairorquenchinwater.

18

Thehighercarbonsteelsinthisrangeandalloysteelsoverapproximately0.40%carbonmayrequireanadjustmentincoolingpracticetooutlineclearlytheaustenitegrainbound-arieswithferrite.Insuchcasesitisrecommendedthatafterholdingthespecimenfortherequiredtimeatahardeningtemperature,thetemperaturebereducedtoapproximately1340625°F(727614°C)for10min,followedbywateroroilquench.Whencool,sectionthespecimentoprovideafresh-cutsurface,polish,andsuitablyetchtorevealtheaustenitegrainsizeasoutlinedbyprecipitatedferriteinthegrainboundaries.MakethemicroscopicalexaminationincompliancewithTable1.

A3.2.1.5OxidationProcedure(CarbonandAlloySteels0.25to0.60%Carbon)—Polishoneofthesurfacesofthespecimen(approximately400-gritor15-µmabrasive).Placethespecimenwiththepolishedsideupinafurnace,and,unlessotherwisespecified,heatat1575625°F(857614°C)for1handquenchincoldwaterorbrine.Polishthequenchedspecimentorevealtheaustenitegrainsizeasdevelopedintheoxidizedsurface.MakethemicroscopicalexaminationincompliancewithTable1.

A3.2.1.6DirectHardeningSteels(CarbonandAlloySteels;CarbonGenerallyBelow1.00%)—Unlessotherwisespeci-fied,heatspecimensofsteelswithacarboncontentof0.35%orlessat1625625°F(885614°C);heatspecimensofsteelswithacarboncontentofover0.35%at1575625°F(857614°C)forsufficienttimeandquenchataratetoproducefullhardening.Polishthequenchedspecimenandetchtorevealthemartensiticstructure.Temperingfor15minat450625°F(232614°C)priortoetchingimprovesthecontrast.MakethemicroscopicalexaminationincompliancewithTable1.

A3.2.1.7HypereutectoidSteels(CarbonandAlloySteels;CarbonGenerallyOver1.00%)—Useaspecimenapproxi-mately1in.(25.4mm)indiameteror1in.squareforthistest.Unlessotherwisespecified,heatthespecimenat1500625°F(816614°C)foraminimumof30min,andfurnacecooltoatemperaturebelowthelowercriticaltemperatureatarateslowenoughtoprecipitatecementiteintheaustenitegrainbound-aries.Whencool,sectionthespecimentoprovideafresh-cutsurface,polish,andsuitablyetchtorevealtheaustenitegrainsizeasoutlinedbyprecipitatedcementiteinthegrainbound-aries.MakethemicroscopicalexaminationincompliancewithTable1.

A3.2.2AusteniticSteels—Withausteniticmaterials,theac-tualgrainsizeofthemetalhasbeenestablishedbypriorheat-treatment.

A3.3RevealingtheGrainSize

A3.3.1FerriticSteels—Forrevealingaustenitegrainsizethefollowingmethods(seeNoteA3.1)aregenerallyused:A3.3.1.1OutliningtheGrainswithCementite—Inthehy-pereutectoidzoneofacarburizing(McQuaid—Ehntest)pro-cedureorinhypereutectoidsteelscooledfromtheausteniticcondition,theaustenitegrainsizeisoutlinedbythecementitewhichprecipitatedinthegrainboundaries.Itisthereforepossibletoratethegrainsizebyetchingthemicrographicspecimenwithasuitableetchant,suchasnital,picral,oralkalinesodiumpicrate.(SeePracticeE407.)

E112–96(2004)e1A3.3.1.2OutliningtheGrainswithFerrite—Inthehypoeu-tectoidzoneofacarburizedspecimen,theaustenitegrainsizeisoutlinedbytheferritethatprecipitatedinthegrainbound-aries.Ferritesimilarlyoutlinestheformeraustenitegrainsinamedium-carbonsteel(approximately0.50%carbon),whenithasbeencooledslowlyfromtheausteniterange.Inlow-carbonsteels(approximately0.20%carbon),coolingslowlyfromtheausteniterangetoroomtemperature,theamountofferriteissolargethattheformeraustenitegrainsizeismasked;inthiscase,thesteelmaybecooledslowlytoanintermediatetemperature,toallowonlyasmallamountofferritetoprecipitate,followedbyquenchinginwater;anexamplewouldbeapiecepreviouslyheatedto1675°F(913°C),transferredtoafurnaceatbetween1350to1450°F(732to788°C),heldatthistemperatureforperhaps3to5min,andthenquenchedinwater;theaustenitegrainsizewouldberevealedbysmallferritegrainsoutlininglow-carbonmartensitegrains.

A3.3.1.3OutliningtheGrainsbyOxidation—Theoxidationmethoddependsonthefactthatwhensteelsareheatedinanoxidizingatmosphere,oxidationtakesplaceinpartpreferen-tiallyalongthegrainboundaries.Acommonprocedure,therefore,istopolishthetestspecimentoametallographicpolish,heatitinairatthedesiredtemperatureforthedesiredlengthoftime,andthenrepolishthespecimenlightlysoasmerelytoremovescale;whereupontheaustenitegrainbound-ariesarevisibleasoutlinedbyoxide.

A3.3.1.4OutliningMartensiteGrainswithFinePearlite—Amethodapplicableparticularlytoeutectoidsteels,whichcannotbejudgedsoreadilybysomeothermethods,iseithertohardenabarofsuchasizethatitisfullyhardenedattheoutsidebutnotquitefullyhardenedintheinterior,ortoemployagradientquenchinwhichtheheatedpieceisforaportionofitslengthimmersedinwaterandthereforefullyhardened,theremainderofthepieceprojectingabovethequenchingbath,beingthereforenothardened.Witheithermethodtherewillbeasmallzonewhichisalmostbutnotquitefullyhardened.Inthiszone,theformeraustenitegrainswillconsistofmartensitegrainssurroundedbysmallamountsoffinepearlite,thusrevealingthegrainsize.Thesemethodsarealsoapplicabletosteelssomewhatlowerandhigherthantheeutectoidcomposition.

A3.3.1.5EtchingofMartensiteGrains—Theformerauste-nitegrainsizemayberevealedinsteelsfullyhardenedtomartensitebyusinganetchingreagentthatdevelopscontrastbetweenthemartensitegrains.Temperingfor15minat450°F(232°C)priortoetchingdistinctlyimprovesthecontrast.Areagentthathasbeenrecommendedis1gofpicricacid,5mLofHCl(spgr1.19),and95mLofethylalcohol.Analternateapproachistouseanetchantthatrevealstheprior-austenitegrainboundariespreferentially.Manyetchantshavebeen

developedforthispurpose(seePracticeE407andstandardtextbooks).Themostsuccessfulconsistsofsaturatedaqueouspicricacidcontainingawettingagent,usuallysodiumtride-cylbenzenesulfonate(thedodecylversionalsoworkswell).Specimensshouldbeintheas-quenchedconditionortemperednotaboveabout1000°F.Successwiththisetchantdependsuponthepresenceofphosphorusinthealloy($0.005%Prequired).Resultsmaybeenhancedbytemperingthesteelbetween850and900°Ffor8hormoretodrivephosphorustothegrainboundaries.Forsteelswithsubstantialalloyaddi-tions,itmaybenecessarytoaddafewdropsofhydrochloricacidtotheetchant(per100mLofetchant).Etchingusuallytakesatleast5min.Theetchantwillattacksulfideinclusions.Lightlyre-polishingthespecimenonastationarywheeltoremovesomeoftheunimportantbackgrounddetailmaymakeiteasiertoseethegrainboundaries.

A3.3.2AusteniticSteels—Forrevealingthegrainsizeinausteniticmaterials,asuitableetchingtechniqueshallbeusedtodevelopgrainsize.Recognizingthattwinningtendstoconfusereadingofgrainsize,theetchingshouldbesuchthataminimumamountoftwinningisevident.

A3.3.2.1StabilizedMaterial—Thespecimen,astheanode,maybeelectrolyticallyetchedinawatersolutioncomposedof60%concentratednitricacidbyvolume,atambienttempera-ture.Tominimizetheappearanceoftwinning,alowvoltage(1to11⁄2V)shouldbeused.Thisetchantisalsorecommendedforrevealingferritegrainboundariesinferriticstainlesssteelsandisusedidentically.

A3.3.2.2UnstabilizedMaterial—Thegrainboundarymaybedevelopedthroughprecipitationofcarbidesbyheatingwithinthesensitizingtemperaturerange,482to704°C(900to1300°F).Anysuitablecarbide-revealingetchantshouldbeused.

A3.4ReportingtheGrainSize

A3.4.1FerriticSteels—Duplex,ormixedgrain-sizedstruc-ture(seeTestMethodsE1181)whenobserved,shallbereportedwithtworepresentativerangesofgrainsizenumbers.Wheneverheat-treatmentsotherthanthecarburizing(McQuaid—Ehntest)procedureareemployedtodevelopaustenitegrainsize,acompletereportshallbemadewhichincludes:

A3.4.1.1Temperatureusedinestablishingthegrainsize,A3.4.1.2Timeattemperatureusedinestablishingthegrainsize,

A3.4.1.3Methodofrevealinggrainsize,andA3.4.1.4Grainsize.

A3.4.2AusteniticSteels—Indeterminingthesizeofauste-niticgrains,thetwinboundarieswithinagrainshallnotbecounted.

19

E112–96(2004)e1A4.FRACTUREGRAINSIZEMETHOD8A4.1Thefracturegrainsizemethod,developedbyArpi(9),andShepherd(2),employsagradedseriesoftenfracturedspecimenstoestimatetheprior-austenitegrainsizeofsteelspecimens(seeFootnote11forapplicablematerials)bycomparison.Carburizedcasesofcarbonandalloysteelsmayalsobeevaluatedforprior-austenitegrainsizebythismethod(butnotthelow-carboncore).

A4.2ThetenfracturedspecimensarenumberedfromonetotenwherethenumberscorrespondtoASTMgrainsizenumbers.Thesampletoberatedisfractured,usuallytrans-versetothehotworkingdirection,andthefractureiscomparedtothetentestfracturesoftheShepherdseries.9Thefractureappearanceofthespecimenisratedtothenearestwholenumberofthestandard,butinterpolationtoone-halfnumbersispermitted.Itisalsopossibletorateduplexconditionswhenthefractureexhibitstwodifferentfracturepatterns.

A4.3Specimenscanbefracturedbystrikingthefreeend,whilerestrainingtheotherend,orbythree-pointbendingusingapress,oratensilemachine(loadedincompression)oranyothersuitablemethod.Notchingofspecimensorrefrigeration

Thismethodisapplicableonlytohigh-hardness,brittlesteelswithapredomi-nantlymartensitemicrostructure,suchastoolsteels,high-carbonsteelsandmartensiticstainlesssteels,andshouldbedonewiththespecimenintheas-quenchedorlightlytemperedcondition.9ForthoseindividualswhodonotpossessaShepherdstandardseries,aphotographicreproductionisavailablefromASTMHeadquarters.OrderADJE011224.

8priortofracturing,orboth,helpstoensureaflatfracture.ForfurtherinformationseeVanderVoort(10).

A4.4Thespecimentoberatedmustbepredominantlymartensitic,althoughlargeamountsofretainedaustenitedonotinvalidatetheresults.Appreciableamountsofresidualcarbidearealsopermitted.However,diffusioncontrolledtransformationproducts,suchasbainite,pearlite,orferrite,ifpresentinamountsmorethanafewpercent,changethenatureofthefractureappearanceandinvalidatefracturegrainsizeratings.Excessivetemperingofmartensitictoolsteelstructuresalsoaltersthefractureappearanceandinvalidatesfracturegrainsizeratings.Ratingsaremostaccurateforas-quenchedorlightlytemperedspecimens.Flat,brittlefracturesaredesiredtoobtainthebestaccuracy.

A4.5Studieshaveshownthatfracturegrainsizeratingsoffullyhardened,as-quenchedtoolsteelscorrelatewellwithmicroscopicallymeasuredprior-austenitegrainsizeratings.Formosttoolsteels,thefracturegrainsizeratingwillbewithin61unitofthemicroscopicallydeterminedprior-austenitegrainsizenumber,G.

A4.6Thefracturegrainsizemethodcannotbeusedtorategrainsizesfinerthanten.Fracturesofspecimenswithprior-austenitegrainsizesfinerthantencannotbediscriminatedbyeyeandwillberatedasiftheywereatengrainsize.Fracturescoarserthanagrainsizenumberofonewillappeartobecoarserthanonebutcannotbeaccuratelyratedbythismethod.

A5.REQUIREMENTSFORWROUGHTCOPPERANDCOPPER-BASEALLOYS

A5.1Forwroughtcopperandcopper-basealloyproductsunderthejurisdictionofCommitteeB-5onCopperandCopperAlloys,itismandatorythatthefollowingproceduresbefollowed:

A5.1.1ThespecimenshallbepreparedinaccordancewithPracticeE3.

A5.1.2Thespecimenusedforthecomparisonmethodshallbecontrastetched,andcomparedwithPlateIII,or,ifgivenaflatetch,comparedwithPlateII.

A5.1.3Thegrainsizeshallbeexpressedastheaveragegraindiameterinmillimetres;forexample,0.025-mmaveragegraindiameter.Themeaningofthisexpressionisthediameteroftheaveragecrosssectionofgrainslyingintheplaneofthemetalbeingexamined.

A5.1.4Mixedgrainsizes(seeTestMethodsE1181)aresometimesencountered,particularlyinhot-workedmetal.Theseshallbeexpressedbygivingtheestimatedareapercent-agesoccupiedbythetworangesofsizes.Forexample,50%of0.015mm;and50%of0.070mm;or,ifarangeexists,40%of0.010to0.020mm;and60%of0.090to0.120mm.

A5.1.5Fordeterminingcomplianceofrequirementsforgrainsizewiththespecifiedlimits,theestimatedvalueshallberoundedinaccordancewith:

GrainSize

Upto0.055mm,inclOver0.055mm

CalculatedorObservedValuetoWhichGrainSize

ShouldbeRounded

tothenearestmultipleof0.005mmtothenearest0.010mm

20

E112–96(2004)e1A6.APPLICATIONTOSPECIALSITUATIONS

A6.1Numerousspecificpracticesforgrainsizemeasure-menthavebecomeestablishedinvarioussegmentsofthemetalsandmaterialsindustries.Thepresentlistingofstandardmethodsisnotintendedtoimplythatanysuchspecificpracticeshouldbeabandonedwhenexperiencehasshownthatpracticetobeadequatefortheintendedapplication.Itis,however,stronglyrecommendedthatthestatisticalprocedureofSection15beappliedtothedatafromthesetraditionalpracticesinordertoensurethattheyyieldaconfidencelimitthatisadequateforcurrentrequirements.

A6.2ItischaracteristicofmanyspecialpracticesthattheyreportanumericalresultthatisnotconvenientlyrelatedtocommonlyusedsizescalessuchasareshowninTable4.Continuedusageofthecustomarynumbersisjustifiedonthegroundsthateithertheyhaveinherentmeaningintheirowncommunity,orthattheyhaveacquiredmeaningthroughlongusage.Itis,however,stronglyrecommendedthatsuchmea-surementsbemadecomprehensibletoawideraudiencefirstbyreexpressionononeofthepreferredmetricscales(asusedinTable4),andthenbyconversiontothecorrespondingASTMgrainsizenumbers.Wheretheoriginalmeasurementsrepre-sentsomeformofinterceptorplanimetriccountitmaybesaidthattheASTMgrainsizenumberhasinfactbeendetermined.Wheretheoriginaldataareofadifferentnature,itshouldbestatedthatthemeasurementisequivalenttoASTMgrainsize

No.“x”.ConversionsmaybemadeeitherthroughTable4orthroughtherelationsshowninAnnexA1andAnnexA2.A6.3Examples:

A6.3.1Example1—TheSnyderandGraffprocedure(11)remainsingeneralusageforestimatingtheausteniticgrainsizeoftoolsteels.ThisisaspecificversionoftheHeyninterceptmethod(see13.1)inwhichthereportednumberistheaveragenumberofinterceptswitha5-in.(127-mm)testlineappliedtoanimageat1000X.ThiscountismoreimmediatelyusefulthantheASTMgrainsizenumberitself,asimportantchangesofqualityareassociatedwithachangeofabouttwoASTMsizenumbers,whichdifferenceisnotwellresolvedonthelogarith-micsizescaleorbycomparisonorplanimetricmethods.TheSnyderandGraffsizenumberwillbecomemeaningfultoothersbymultiplyingbythefactor7.874toyieldNLpermillimetre,afterwhichTable4willindicate,forexample,thatS&GNo.15isASTMgrainsizeNo.10.5.Furthermore,astheprecisionofthispracticedoesnotattain2%ofthecount,the5-in.(127-mm)testlinecouldbereplacedbya125-mmtestlinewithoutinvalidatingpastrecords,makingthemultiplier8.0,whereuponthetotalinterceptcountoneighttestlinesequalsNLdirectly.TheconfidencelimitevaluationinSection15canbeappliedtosingletestlines,ortototalsonfixednumbersoflinesineachlocalarea.

APPENDIXES

(NonmandatoryInformation)

X1.RESULTSOFINTERLABORATORYGRAINSIZEDETERMINATIONS10X1.1Thisinterlaboratorytestprogramwasconductedtodevelopprecisionandbiasestimatesforthemeasurementofgrainsizebythechartcomparisonmethod,bytheplanimetricmethod,andbytheinterceptmethod.

X1.2Procedure

X1.2.1Photomicrographs(8by10in.)oftwodifferentferriticstainlesssteels,fourofonespecimenatdifferentmagnificationsandthreeoftheotherspecimenatdifferentmagnifications,wereratedforgrainsizeusingthechartmethodwithPlateIandbytheplanimetricandinterceptmethods.AdrawingofthegrainboundariesofaspecimenofausteniticHadfield’smanganesesteel,withagraincontrastetch,wasalsoevaluatedbyallthreemethods.Anumberofothermicrographswereratedonlybythecomparisonmethod.Ineachcase,thegrainboundarieswereclearlyandfullydelineated.

X1.2.2Fortheplanimetricmethod,eachraterwasgivenan8by10in.clearplastictemplatewithfive79.8mmdiametertestcirclesandagreasepencil.Fortheinterceptmethod,eachraterwasgivenasinglethree-circletemplate.

X1.2.3Fortheplanimetricmethod,thetemplatewasdroppedontothephotographandtapeddowntopreventmovement.Becausethecirclesgridandthemicrographwerenearlythesamesize,gridplacementshouldberatherconsis-tentbetweenraters.Fortheinterceptmethod,theratersdroppedtheirgridontothemicrographfivetimesatrandom.Itwasassumedthatthisdifferenceinplacementmethodwouldreducethevariabilityoftheplanimetricmethodrelativetotheinterceptmethod.

X1.3Results

X1.3.1Figs.X1.1andX1.2showthegrainsizeratingsforthetwoferriticstainlesssteels,identifiedasSeriesAandB,asafunctionofthemagnificationofthemicrographs,fortheplanimetricandinterceptmethods.Threepeoplealsomadeimageanalysismeasurementsoftheimages.Ascanbeseen,thetightestspreadoccurred,forbothsetsofmicrographs,atamagnificationofabout400Xwheretheaveragegraincountper

21

SupportingdatahavebeenfiledatASTMInternationalHeadquartersandmaybeobtainedbyrequestingResearchReportRR:E04-1005.

10E112–96(2004)e1planimetricmeasurementwasabout30to35andtheaveragenumberofinterceptsorinterceptswasabout40to50perthree-circleapplication.

X1.3.2Figs.X1.3andX1.4showhowthepercentrelativeaccuracyofthemeasurementsvariedwiththenumberofgrainscounted,Fig.X1.3,andwiththenumberofinterceptsorintersectionscounted,Fig.X1.4.Allofthemeasurementdataareincluded.NotethatapercentRAof10%,orless,isobtainedwhenabout700ormoregrainsarecountedbytheplanimetricmethodandwhenabout400grainboundaryintersectionsorgraininterceptsarecountedfortheinterceptmethod.Becausethegrainsmustbemarkedoffonthetemplateastheyarecountedtoensurecountingaccuracyintheplanimetricmethod,whilemarkingisnotneededfortheinterceptmethod,itisclearthattheinterceptmethodisamoreefficientmethod.

X1.3.3TablesX1.1andX1.2listtheresultsoftheanalysisofrepeatabilityandreproducibilityaccordingtoPracticeE691.Ingeneral,theinterceptmethodoutperformedtheplanimetricmethodinthisstudy.

X1.3.4Fig.X1.5showsaplotoftheplanimetricversustheinterceptgrainsizeratingforeachmicrographbyeachrater.Notethatthedataarescatteredatrandomaroundtheone-to-onetrendline.Thisindicatesthattherewasnobiasinthegrainsizemeasurementsbyeithermethod.

X1.3.5Eachmicrographthatwasratedforgrainsizecouldbeconsideredintwoways,firstasaratingforthetruemagnificationofthemicrographandsecondforaratingasifthemicrographwasat100X.Forevaluationofthecomparisonmethod,itwasassumedthateachmicrographwasat100X.

Theinterceptandplanimetricdatawerealsocomputedusingthisassumption.Figs.X1.6andX1.7showplotsofthechartcomparisonratingsversustheplanimetricandinterceptratings,assumingallmicrographswereat100X.Notethatthedataarenotscatteredatrandomaroundtheone-to-onetrendline.Thisclearlyshowsthatbiasisoccurringinthechartcomparisonratings,whichweretypically0.5to1Gunitlower,thatis,coarser,thantheplanimetricorinterceptmeasurements.Thesourceofthisbiasisunderstudy.

FIG.X1.1GrainSizeMeasurementsfortheSeriesAFerritic

StainlessSteelSpecimens

FIG.X1.2GrainSizeMeasurementsfortheSeriesBFerritic

StainlessSteelSpecimens

22

E112–96(2004)e1NOTE1—Theimageanalysisresultsforthesamemicrographs.

FIG.X1.3RelationshipBetweentheNumberofGrainsCountedandthePercentRelativeAccuracyforthePlanimetricMethod

NOTE1—Theimageanalysisresultsforthesamemicrographs.

FIG.X1.4RelationshipBetweentheNumberofInterceptsorIntersectionsCountedandthePercentRelativeAccuracyforthe

InterceptMethodTABLEX1.1ResultsofASTMGrainSizeRoundRobin(PlanimetricMethod)

ImageA1A2A3A4B1B2B3

No./sq.mm846.831.611046.978.491054.121069.411184.01

ASTMG6.776.757.086.987.097.117.26

AverageNo.1918.0474.5150.535.5608.5152.541.5

Repeatability95%CL106.11209.68499.42785.07342.214.60435.21

Reproducibility95%CL

266.56239.884.10765.18344.35452.27403.98

Repeatability

%RA

12.5325.2147.7080.2332.43.4436.76

Reproducibility

%RA

31.4928.8546.7278.2032.6742.2934.12

23

E112–96(2004)e1TABLEX1.2ResultsofASTMGrainSizeRoundRobin(InterceptMethod)

ImageA1A2A3A4B1B2B3

,¯(µm)29.929.827.229.026.126.726.6

ASTMG6.846.857.116.937.237.177.18

AverageIntercepts811.5396.0222.5102.0450.0223.5113.0

Repeatability95%CL

3.255.658.2814.904.966.198.84

Reproducibility95%CL

9.376.338.1616.467.967.019.86

Repeatability

%RA

10.8718.9630.4351.3719.0123.2033.24

Reproducibility

%RA

31.3521.2430.0056.7730.5126.2637.08

FIG.X1.5ComparisonoftheGrainSizeMeasurementsforEachMicrographbyEachOperatorbythePlanimetricandIntercept

Methods

NOTE1—Chartplotsbyeachraterandassumesthemicrographsareat100Xmagnification.Thedatagenerallyfalltoonesideoftheonetoonetrendlineindicatingabias.

FIG.X1.6PlotoftheComparisonChartGrainSizeRatingsforEachMicrographVersusthePlanimetricMethodRatingforEach

Micrograph

24

E112–96(2004)e1FIG.X1.7PlotoftheComparisonChartGrainSizeRatingsforEachMicrographVersustheInterceptMethodRatingforEach

Micrograph

X2.REFERENCEDADJUNCTS

X2.1ThefollowingisacompleteandupdatedlistofadjunctsreferencedinTestMethodsE112.AlladjunctsareavailablefromASTM.

Adjunct:

Combinationof18Components

CombinationofPlatesI,II,III,andIVPlateIonlyPlateIIonlyPlateIIIonlyPlateIVonly

CombinationTransparencies,(PlateI)00through10Transparency,GrainSize00Transparency,GrainSize0Transparency,GrainSize0.5

OrderAdjunct:ADJE112CSADJE112PSADJE11201PADJE11202PADJE11203PADJE11204PADJE112TSADJE11205TADJE11206TADJE11207T

Transparency,Transparency,Transparency,Transparency,Transparency,Transparency,Transparency,Transparency,Transparency,Fig.5only

GrainGrainGrainGrainGrainGrainGrainGrainGrain

Adjunct:

Size1.0Size1.5Size2.0Size2.5

Sizes3.0,3.5,andSizes4.5,5.0,andSizes6.0,6.5,andSizes7.5,8.0,andSizes9.0,9.5,and

Adjunct:

4.05.57.08.510.0

Adjunct:

ShepherdSeriesReproduction

OrderAdjunct:ADJE11208TADJE11209TADJE11210TADJE11211TADJE11212TADJE11213TADJE11214TADJE11215TADJE11216TOrderADJ:E11217FOrderADJ:ADJE011224

REFERENCES

(1)Hull,F.C.,Transactions,“ANewMethodforMakingRapidandAccurateEstimatesofGrainSize,”AmericanInstituteofMiningandMetallurgicalEngineers,Vol172,1947,p.439.

(2)Shepherd,B.F.,“TheP-FCharacteristicofSteel,”Transactions,TransactionsoftheAmericanSocietyofMetals,Vol22,December1934,pp.979–1016.

(3)Jeffries,Z.,Kline,A.H.,andZimmer,E.B.,“TheDeterminationoftheAverageGrainSizeinMetals,”Transactions,AmericanInstituteofMiningandMetallurgicalEngineers,Vol54,1917,pp.594–607.(4)Heyn,E.,“ShortReportsfromtheMetallurgicalLaboratoryoftheRoyalMechanicalandTestingInstituteofCharlottenburg,”Metallog-raphist,Vol5,1903,pp.37–.

(5)Underwood,E.E.,andCoons,W.C.,“TheRoleofQuantitativeStereologyinDeformationTwinning,”DeformationTwinning,Gordon

andBreach,NewYork,1965,pp.405–429.

(6)Hilliard,J.,“EstimatingGrainSizebytheInterceptMethod,”MetalProgress,Vol85,May19.

(7)Abrams,H.,“GrainSizeMeasurementbytheInterceptMethod,”Metallography,Vol4,1971,pp.59–78.

(8)Mendelson,M.I.,“AverageGrainSizeinPolycrystallineCeramics,”J.AmericanCeramicSociety,Vol52,August1969,pp.443–446.(9)Arpi,R.,“TheFractureTestasUsedforToolSteelinSweden,”Metallurgia,Vol11,No.65,March1935,pp.123–127.

(10)VanderVoort,G.F.,“GrainSizeMeasurement,”PracticalApplica-tionsofQuantitativeMetallography,ASTMSTP839,1984,pp.85–181.

(11)Snyder,R.W.,andGraff,H.F.,“StudyofGrainSizeinHardened

HighSpeed,”MetalProgress,Vol33,1938,pp.377–380.

25

E112–96(2004)e1ASTMInternationaltakesnopositionrespectingthevalidityofanypatentrightsassertedinconnectionwithanyitemmentionedinthisstandard.Usersofthisstandardareexpresslyadvisedthatdeterminationofthevalidityofanysuchpatentrights,andtheriskofinfringementofsuchrights,areentirelytheirownresponsibility.

Thisstandardissubjecttorevisionatanytimebytheresponsibletechnicalcommitteeandmustbereviewedeveryfiveyearsandifnotrevised,eitherreapprovedorwithdrawn.YourcommentsareinvitedeitherforrevisionofthisstandardorforadditionalstandardsandshouldbeaddressedtoASTMInternationalHeadquarters.Yourcommentswillreceivecarefulconsiderationatameetingoftheresponsibletechnicalcommittee,whichyoumayattend.IfyoufeelthatyourcommentshavenotreceivedafairhearingyoushouldmakeyourviewsknowntotheASTMCommitteeonStandards,attheaddressshownbelow.

ThisstandardiscopyrightedbyASTMInternational,100BarrHarborDrive,POBoxC700,WestConshohocken,PA19428-2959,UnitedStates.Individualreprints(singleormultiplecopies)ofthisstandardmaybeobtainedbycontactingASTMattheaboveaddressorat610-832-9585(phone),610-832-9555(fax),orservice@astm.org(e-mail);orthroughtheASTMwebsite(www.astm.org).

26

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo0.cn 版权所有 湘ICP备2023017654号-2

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务