您好,欢迎来到华佗小知识。
搜索
您的当前位置:首页高等数学下册第十二章习题答案详解

高等数学下册第十二章习题答案详解

来源:华佗小知识
高等数学下册第十二章习题答案详解

1.写出下列级数的一般项: 111(1)1357;

2xxxxx(2)2242462468(3)

a3a5a7a93579.

解:(1)Un1; 2n1

(2)Unxn22n!!;

(3)Un1n1a2n1; 2n12.求下列级数的和: (1) (2) (3)

11155253n1;

1; n(n1)(n2)(n1n22n1n).

解:(1) 因为Sn1112n 55511n15511511n145从而limSnn11,即级数的和为. 441

(2)unxn1xnxn11112xn1xnxnxn1从而Sn11111 2xx1x1x2x1x2x2x311xn1xnxnxn11112xx1xnxn1因此limSnn12xx1,故级数的和为

12xx1

(3)因为Unn2n1n1n 从而Sn32214332

5443n2n112112n2n1n2n1n1n所以limSn12,即级数的和为12.

n3.判定下列级数的敛散性: (1)

(n1n1n);

(2)1111661111161(5n4)(5n1);

23n222n12(3)23(1)3333n(4)1111.

n55355解:(1) Sn2132n1n

n11从而limSn,故级数发散.

n(2) Sn111111156611111611155n111 5n45n111,故原级数收敛,其和为.

n552(3)此级数为q的等比级数,且|q|<1,故级数收敛.

3从而limSn(4)∵Un*

1,而limUn10,故级数发散. nn54.利用柯西审敛原理判别下列级数的敛散性:

(1)n1(1);

nn1(2)cosnnx; 2n1(3)n03n113n123n13.

Unp解:(1)当P为偶数时,

Un1Un21n21n31n4n1n2n3111n1n2n3111n1n2n31np1np1np111np2np1np

1n1当P为奇数时,

Un1Un2Unp1n21n31n4n1n2n3111n1n2n3111n1n2n31np1np1np11np1np

1n1因而,对于任何自然数P,都有

Un1Un2Unp111, n1n∀ε>0,取N1,则当n>N时,对任何自然数P恒有Un1Un2Unp成

1n1立,由柯西审敛原理知,级数收敛.

nn1(2)对于任意自然数P,都有

Un1Un2Unpcosnpx2npcosn1xcosn2x2n12n2111n1n2np2221112n12p11211n122p1n2

于是, ∀ε>0(0<ε<1),∃N=log21,当n>N时,对任意的自然数P都有Un1Un2(3)取P=n,则

Unp成立,由柯西审敛原理知,该级数收敛.

Un1Un2Unp11132n132n232n31113n113n123n13113n1132n1n6n1112从而取0

1,则对任意的n∈N,都存在P=n所得Un1Un212Unp0,由柯西

审敛原理知,原级数发散.

习题12-2

1.用比较判别法法判别下列级数的敛散性: (1)114657(2)11(n3)(n5)1n1n2; ;

1213122132(3)sinπ; (4)1; n33n1n12n(5)1nn11a(a0); (6)(21).

n11n解:(1)∵ Un112

n3n5n1而2收敛,由比较审敛法知Un收敛. n1nn1(2)∵Un1n1n1 221nnnn而

n发散,由比较审敛法知,原级数发散.

n11ππsinnn33(3)∵limlimππ

nn1π3n3nsinππ而n收敛,故sinn也收敛.

3n13n1(4)∵Un12n31n31n332

n11n32收敛,故

n112n收敛.

1111(5)当a>1时,Un,而收敛,故也收敛. nnnna1aan1n11a110,级数发散.

nn221当0nn1an当a=1时,limUnlim综上所述,当a>1时,原级数收敛,当0211211ln2知limln21而发散,由比较审敛法知n(6)由lim发

21x0x1nxn1n1nx1n散.

2.用比值判别法判别下列级数的敛散性:

2(1)nn; n13

(2)nn!; n13123333(3)12222322n3n2nn2; (4) nn!. nn1n2Un1n123n1解:(1) Unn,limlimn121,

nUn33n3n由比值审敛法知,级数收敛.

Un1n1!3n1(2) lim limn1nUn31n!n3n1limn1n1n31所以原级数发散.

Un13n1n2nlimn (3) limn1nUn3n12nlim3n2n1n312所以原级数发散.

Un12n1n1!nn(4) lim limnn1nUn2n!n1nnlim2nn1122lim1nne11n故原级数收敛.

3.用根值判别法判别下列级数的敛散性:

15n(1); (2)n; 3n1ln(n1)n1n1nnn(3)n13n12n1; (4)b,其中ana(n),an,b,a均为正数.

an1nn解:(1)limnUnlimn5n51,

n3n131lnn1故原级数发散. (2) limnUnlimnn01,

故原级数收敛. (3)limnUnlimnnn3n1n21n11, 9故原级数收敛.

bbb, (4) limnlimnnaaann当bbbb<1,原级数收敛;当b>a时,>1,原级数发散;当b=a时,=1,无法判aaa定其敛散性.

习题12-3

1.判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛? (1) 1111234;

(2)(1)n1n11;

ln(n1)n2; n!11111111(3)23453535353(4)

(1)n1n1(5)(1)n1n1lnn; n1(1)). nnn (6)

1n1n1n; 3n111*(6)(123n1解:(1)Un1n111110,,级数Un是交错级数,且满足,limnnnn1nn1由莱布尼茨判别法级数收敛,又级数条件收敛. (2)Un1n1Un1nn11n12是P<1的P级数,所以

Un1n发散,故原

1lnn1,

1n1n11lnn1为交错级数,且

1lnn111lnn21 n1,

lim1lnn1n0,由莱布尼茨判别法知原级数收敛,但由于Unlnn1所以,

Un1n发散,所以原级数条件收敛.

(3)Un1n111111U,显然,而是收敛的等比级数,故nnnnn5n1353n13n1n153Un1n收敛,所以原级数绝对收敛.

(4)由un1n122n,则有nunnn!n!2n2n个2221,由正项级数的根值2nn122nn12判别法知,收敛,则级数收敛,(1)绝对收敛. 1n!n!n!n1n1n (5)函数fxlnnlnn1lnx在e,+为单调递减函数,则当n充分大时,且nn1x1lnnlnn1lim0,由莱布尼兹判别法知交错级数收敛,又,而调和级数是发散nnnnn1n的,则(1)n1n1lnn条件收敛. nnn13nn1nuu,则,又0lim0,根据莱布尼nn1n3n13n13n3nnn1n1n1n3兹判别法知1收敛,又由比较判别法知1,则级数n1n133nn1n3(6)unun11n1n1nn1n1收敛,则级数绝对收敛. n13n13n1*(6)由于11123111 nnn而

1发散,由此较审敛法知级数 nn111123n1记Un111发散. nn11,则 nnn112311UnUn11231112311230即UnUn1 又limUnlimn11112nnn1n11112nnn1n1

11112nnn1nn1n11111nn231n1dxn1x1 n11t1由limdxlimt0 tt1xt111知limUn0,由莱布尼茨判别法,原级数1n23n1件收敛. 2.如果级数

1111122!23!223n11收敛,而且是条nn11n!2n

的和用前n项的和代替,试估计其误差.

11=n1!2n111n2!211n1!2n2n211<n1!211=n1!211=n1!21n1!2n2n1

n11121221112n13.若limnun存在,证明:级数un收敛.

nn1un12lim=limnun存在,而2收敛.n1nn1n2 n所以un也收敛n1*4.证明:若

un12n收敛,则un绝对收敛. nn10<2un112un2un2nnnu12而2,和un都收敛,由比较审敛法得知2n收敛

nn1nn1n1从而n1unu收敛,即n绝对收敛.nn1n

习题12-4

1.求下列函数项级数的收敛域: 1(1)x; n1n

(2)1n1n11. nx

2.求下列幂级数的收敛半径及收敛域: (1)x2x3x23nxn;

(2)n!nx; nn1nx2n1(3);

2n1n1

(x1)n(4)2. n1n2n解:(1)因为limnan11n1lim1,所以收敛半径R1收敛区间为(-1,1),而当nnannx=±1时,级数变为域为(-1,1).

1n1n,由lim(1)n0知级数(1)nn发散,所以级数的收敛

nxnn1nan11nn1!nnn1limlimlime(2)因为lim 1n1nannnn!n1n1nn1所以收敛半径R1e,收敛区间为(-e,e).

enn!当x=e时,级数变为n,

n1nen1n1!n1un1enn!unnnn1en1nnn1n1en, enn111nn在n的过程中,un1u1e,1,又un0,则xe时,常数项级数为单调递增函数,

un则limun0,由级数收敛的必要条件,级数的一般项不趋于零,则该级数必发散,同理在

nxe时,n1enn!nnenn!变为交错级数,其中limn依旧不等于0,,则在xe时也发

nn散,则其收敛域为e,e.

(3)级数缺少偶次幂项.根据比值审敛法求收敛半径.

Un1x2n12n1limlim2n1 nUn2n1xnlimx2所以当x2<1即|x|<1时,级数收敛,x2>1即|x|>1时,级数发散,故收敛半径R=1.

n2n12x2n11111当x=1时,级数变为,当x=-1时,级数变为,由lim2n10知,

n12n12n1n12n1n11发散,从而也发散,故原级数的收敛域为(-1,1). 2n12n1n1n1an1n22ntn(4)令t=x-1,则级数变为2,因为limlim1 2nnann12n1n1n2n所以收敛半径为R=1.收敛区间为 -111n当t=1时,级数3收敛,当t=-1时,级数1为交错级数,由莱布尼茨判32n2nn1n1别法知其收敛.

所以,原级数收敛域为 0≤x≤2,即[0,2] 3.利用幂级数的性质,求下列级数的和函数:

(1)nxn1n1;

 (2)

x2n2. 2n1n0解:(1)可求得函数nxn1在x<1时收敛,n1Sxnxn1xnn1n1x1nxx<12n11x1x

x2n42n12x(2)由lim知,原级数当|x|<1时收敛,而当|x|=1时,原级数发散,故原2n2n2n3xx2n2x2n1x2n1x级数的收敛域为(-1,1),记Sx,易知级数收敛域为2n12n1n0n0n02n11x2n12n(-1,1),记S1x,则S1xx, 21x2n1n0n0故

11x11x 即,S100,所以SdxlnSSln1x1001x21x21xx1xSxxS1xlnx1

21xx习题12-5

1.将下列函数展开成x的幂级数,并求展开式成立的区间: (1)fxln2x; fx1xln1x; (3)

(2)fxcos2x; (4)fxx21x2;

(5)fxx; 3x21fx(exex); (6) 2解:(1)fxln2xln21xx ln2ln122xn由于ln1x1,(-1n1n0nxn1xn故ln11,(-2≤x≤2) n1n122n0xn1因此ln2xln21,(-2≤x≤2) n12n1n0n(2)fxcosxn21cos2x 2x2n由cosx1,(-∞2n!n0n2n2x2nn4x1得cos2x1 !!2n2nn0n0n所以

f(x)cos2x11cos2x22n2n11n4x,(-∞1n0nxn1n1,(-1≤x≤1)

xn1fx1x1n1n0nn2xn1nx11n1n0n1n0nn1xn1n1xx11n1nn1n1n1nn1n1n1n1xxnn1n11n1n1xxnn1n1 (-1≤x≤1)

(4)fxx21x2x211x2

由于2n1!!2n11nx (-1≤x≤1) 22n!!n11x12n2n1!!2nx 故fxx11!!2nn1

2n1!!2n1x1nx (-1≤x≤1)

2n!!n12(5)fxx31x213n

2xnx13n03x2n11n13n0nx3xn(6)由e,x∈(-∞,+∞)

n0n!x1nxn得e,x∈(-∞,+∞)

n!n0x所以fx1xxee21xn1nxn2n0n!n0n!1xnn112n0n!n0

x2n12n1!x,2.将fx1展开成x4的幂级数.

x3x22111解:2x3x2x1x211111x4x+4而<1x13x431x43n0333n0nx43n1n7<x<1n11111x4x41x22x421x42n0222n0x42n1n6<x<-2nnx4x41从而2x3x23n12n1n0n01n1n1n1x46<x<23n02

3.将函数fxx3展开成(x1)的幂级数. 解

1xm1所

mmm12xx1!2!mm1mn1nxn!1x1

fxx31x1323331212x12x121!2!

(-1

33312222n!3n12nx133131fx1x12x1231x13222!23!31152n1x1n0x2n2n!n131132n5nx1n2n!4.利用函数的幂级数展开式,求下列各数的近似值: (1) ln3(误差不超过0.0001); (2) cos2(误差不超过0.0001).

1xx3x52x解:(1)ln1x35令

x2n12n1,x∈(-1,1) 1x13,可得x1,1, 1x21122111故ln3ln2323525112又

12n12n12 11rn22n12n322n32n122n122n12n122n1212n32n52n122n1222n32n5211142n122n1222212n122n1114132n122n2

10.00012

311281 r60.00003. 103132故r5因而取n=6则

111ln322323525211.0986

112114πππ0(2)cos2cos19090902!4!ππ904610;90108 ∵

2!4!24πn9012n!2n

π9010.00060.9994 0故cos212!5.将函数Fxx02arctantdt展开成x的幂级数. tnt2n1解:由于arctant1

2n1n0所以Fxx0xarctantt2nndt1dt0t2n1n0xn

t2nx2n1n1dt102n12n12n0n0 (|x|≤1)

6.求下列级数的和函数: x2n1(1) ;

2n1n0(2)nxn1 (提示:应用ex的幂级数展开式);

n0(n1)!x2n1解:(1)可求得原级数的收敛半径R=1,且当|x|=1时,原级数发散.记Sx则

n02n1Sxx2nn01 21x111x11x,即,S(0)=0 dxlnSSlnx0001x221x21x11x所以Sxln,(|x|<1)

21xn1n1nan1n!x(2)由lim知收敛域为(-∞,+∞).记Sx则lim0nnnn!an1n1n1!xSxdxxx0Sxdxn1xnn1!xn1xn1n1!xex,所以

Sxxex1xex,(-∞7.试用幂级数解法求下列微分方程的解:

(1)yx2y0;(2)yxyy0;(3)yxyx1;(5)(x1)yx22xy.(4)(1x)yx2y;

解:()设1yanx,则ynanxnn0n1nn1,ynn1anxn2nn2n1n2an2xnn0代入原方程得n1n2an2xxn02axnn00即n2n1an1x=an2xnnn0n2比较同次幂系数,得21a2032a3043a4a054a5a1一般地n2n1an2an2即an2an2n2n1n2,3,a0a0aa,a51,a6a70,a843445783478aaa0a1a95,a10a110,a12845111234781112aa1a139,1213451213所以a4k2a4k30所以有a2a30,a4a4ka0k1,2,34784k14ka1k1,2,454k4k1a4k1x4x5x12因此yC1134347834781112x4x8x12C2x145458945891213

是方程的解(2)设yanxn为该方程的解,代入该方程得n0annn1xn2n0n2xannxn1n1anxn0n0n即n2n1an2n1anx0故n2n1an2n1an0n0,1,2,即an21ann0,1,2,n2ka011111从而a2ka2k2a02kk!22k2k22a11111ka2k1a2k1a112k11352k12k12k132na012a014a012n因而ya0xxx1!22!2n!2a13a15x2k1kaxx11131351352k12n1x21x221xa011!22!2n!21315x2k1ka1xxx11351352k113x2x3x5x2n1n2a0ea1x1131351352k1故原方程的通解为yC1ex22C2n11n12n1!!x2n1

(3)设方程的解为ya0anx,从而y=nanxn1,代入方程得nn1n1naxnn1n1xa0anxnx1n1n1即a112a2a01xan2ax0n2nn1因而a11,a2a71,3571a01a01a011,a3,a4,a5,a6,2324352461a01,a2n1,a2n1352n12462nx2n12n1!!1a021a041a02nxxx24!!2n!!2222nx1x1x1a01122!!2n!!2x3x5因此ya0x3!!5!!x3x5a0x3!!5!!x2n12n1!!x22x3x2n1a01a01a0ex3!!2n1!!x232n1xx21a0e1x3!!2n1!!x2n1故方程的通解为yCe12n1!!(4)令yanxn是该方程的解,代入该方程得n0x221xnanxn1n0n1xanxn2n0n2即n1a1naxxn1n比较系数得a1a00,2a20,3a3a2=1,以及n1an11nan0n4

1故a1a0,a20,a3,3n2n2n3n4n521anan1nnn1n2n343132因而yC1xxxn是方程的解.3n4nn1(5)设方程的解为yanx,则y=nanxn1,代入方程得nn0n1naxnaxnnnn1n1n1n1a0anxnx22xn1n2即nann1an1anxa1a0x2x比较系数得a1a00,2a22,a23a31n1ann1an10n3从而a1a0,a21,a323n1n1n2n1n2an1anan1n1nnn1n1n4n41a31n3nn1nn1n342a34即an14n4nn1

因而原方程的通解为234n1yC1xxx1xn.3nn1n42

8. 试用幂级数解法求下列方程满足所所给定初始条件的解:

(1)(x22x)y2(1x)y2y0,y(0)y(1)1;dyxy2,y(0)0;dxd2x(3)2xcost0,x(0)a,x(0)0.dt(2)

()设1yanx,则ynanxnn0n1n1,ynn1anxn2n2代入原方程得x22xnn1anxn221xnanxn12anxn0n2n1n0

比较同次项系数,由初始条件可得方程的解为y1xx2.(2)设yanx,则ynanxn1,由y00,得a00.nn0n1.代入原方程得n1nnaxaxnnxn1n1比较同次幂系数得方程的解为y1215xx2202

2dxn1dx(3)设xant,则nant,2nn1antn2dtn1dtn0n2由初始条件x0a,x00,所以a0a,a10n代入原方程得2a232a3t43a4t254a5t365a6t4t2t4t6a0a1ta2ta3t102!4!6!即2a232a3t43a4t254a5t365a6t4a023aaaaa1ta20t2a31t2a420t42!2!2!4!比较系数得2a2a0032a3a10a002!a54a5a3102!aa65a6a42002!4!43a4a2又a0a,a10,得到0a0a22aa31032aa202!aa4434!aa312!0a554aaaaaa420a64202!4!9a,a0,a2!4!655t8,a678656!878!12955所以xa1t2t4t6t84!6!8!2!a2

习题12-6

1.设fx是周期为2π的周期函数,它在π,π上的表达式为

2, πx0, f(x)3x, 0xπ.试问fx的傅里叶级数在x-π处收敛于何值?

解:所给函数满足狄利克雷定理的条件,x=-π是它的间断点,在x=-π处,f(x)的傅里叶级

fπfπ131π22π3 数收敛于

2221, πx0,2.写出函数f(x)2的傅里叶级数的和函数.

x, 0xπ.解:f (x)满足狄利克雷定理的条件,根据狄利克雷定理,在连续点处级数收敛于f (x),在间

f0f01fπfππ21,断点x=0,x=±π处,分别收敛于,

2222fπfππ21,综上所述和函数.

221x2Sx12π212πx00xπx0xπ

3. 写出下列以2π为周期的周期函数的傅里叶级数,其中fx在π,π上的表达式为: π, 0xπ(1)f(x)4 ;

π, πx04(2)fxx2(πxπ);

π, πxπ22x(πxπ). (3)f(x)x, πxπ ; (4)fxcos222π, πxπ22解:(1)函数f(x)满足狄利克雷定理的条件,x=nπ,n∈z是其间断点,在间断占处f(x)的傅里叶级数收敛于

f0f02ππ440,在x≠nπ,有

21π10π1ππanfxcosnxdxcosnxdxcosnxdx0

π-πππ4π04bn1π10π1ππfxsinnxdxsinnxdxsinnxdx-ππ0ππ4π4

0,n2,4,6,,1,n1,3,5,.n于是f(x)的傅里叶级数展开式为

fx1sin2n1x (x≠nπ)

n12n1(2)函数f(x)在(-∞,+∞)上连续,故其傅里叶级数在(-∞,+∞)上收敛于f(x),注意到f(x)为偶函数,从而f(x)cosnx为偶函数,f(x)sinnx为奇函数,于是

1π22π21π, bnfxsinnxdx0,a0xdx-π-ππ3πan1π2π24n (n=1,2,…) fxcosnxdxxcosnxdx12-π0ππn所以,f(x)的傅里叶级数展开式为:

π24nfx12cosnx (-∞3n1n(3)函数在x=(2n+1)π (n∈z)处间断,在间断点处,级数收敛于0,当x≠(2n+1)π时,由f(x)

为奇函数,有an=0,(n=0,1,2,…)

ππ2π2π2bnfxsinnxdxxsinnxdxπsinnxdxπ0π022 12nπn12sinn1,2,nnπ2所以

2nπn11fx12sinsinnx (x≠(2n+1)π,n∈z)

nnπ2n1(4)因为fxcosx作为以2π为周期的函数时,处处连续,故其傅里叶级数收敛于f(x),2注意到f(x)为偶函数,有bn=0(n=1,2,…),

1πx2πxancoscosnxdxcoscosnxdxπ-π2π021π11cosnxcosnxdxπ02211sinnxsinnx12211πnn2201n141n0,1,2,π4n21所以f(x)的傅里叶级数展开式为:

π

24n1cosnxfx1 x∈[-π,π] 2ππn14n14. 将下列函数fx展开为傅里叶级数: πx(1)fx42(πxπ);

(2)fxsinx(0x2π).

解:(1) a01π1ππxπfxcosnxdxdx -ππππ4221ππx1π1πancosnxdxcosnxdxxcosnxdxππ424-π2π-π

1πsinnxπ00n1,2,4nbn1ππx1π1πsinnxdxsinnxdxxsinnxdxπ-π-ππ4242π

n11nπnsinnx故fx1 (-π4n1n(2)所给函数拓广为周期函数时处处连续, 因此其傅里叶级数在[0,2π]上收敛于f(x),注意到

1π1πf(x)为偶函数,有bn=0,a0fxcos0xdxsinxdx

ππππ2π4sinxdxπ0π2π2πanfxcosnxdxsinxcosnxdxπ0ππ1πsinn1xsinn1xdx0π2n112πn1n1,3,5,0,4,n2,4,6,πn21所以

24cos2nx (0≤x≤2π) fx2πn1π4n15. 设fxx1(0xπ),试分别将fx展开为正弦级数和余弦级数. 解:将f (x)作奇延拓,则有an=0 (n=0,1,2,…)

bn2π2πfxsinnxdxx1sinnxdx00ππ2111ππnnn

2111π从而fxsinnx (0πn1n若将f(x)作偶延拓,则有bn=0 (n=1,2,…)

2π2πanfxcosnxdxx1cosnxdx

π0π0n2,4,60,4,n1,3,5,n2π1π2πa0fxdxx1dxπ2

πππ0π24cos2n1x从而fx (0≤x≤π) 2πn12n126. 将fx2x(1x1)展开成以2为周期的傅里叶级数,并由此求级数12的和.

n1n1解:f(x)在(-∞,+∞)内连续,其傅里叶级数处处收敛,由f(x)是偶函数,故bn=0,(n=1,2,…)

a0fxdx22xdx5

101anfxcosnxdx22xcosnxdx1011n2,4,60,4,n1,3,5,nπ2所以

54fx22π取x=0得,

n1cos2n1πx2n1122,x∈[-1,1]

n12n1π2,故 811111π22 222n4n1n8n1n12n1n12n所以

1π 2n6n17. 将函数fxx1(0x2)展开成周期为4的余弦级数.

解:将f(x)作偶延拓,作周期延拓后函数在(-∞,+∞)上连续,则有bn=0 (n=1,2,3,…)

212fxdxx1dx0 202a0212nπxnπxanfxcosdxx1cosdx022224n 22[11]nπn2,4,6,0,822,n1,3,5,nπ8故fx2πn112n1cos22n1πx (0≤x≤2)

2x, 0x1a028. 设f(x),sxancosnπx,2n1122x, x125an2f(x)cosnπxdx,求s.

021x,其中

解:先对f(x)作偶延拓到[-1,1],再以2为周期延拓到(-∞,+∞)将f(x)展开成余弦级数而得到 s(x),延拓后f(x)在x5处间断,所以 25111515sffff2222222

11312249.设函数fxx2bn2f(x)sinnπxdx01(0x1),而sxbnsinnπx,n1x,其中

n1,2,3,.求s12.

解:先对f (x)作奇延拓到,[-1,1],再以2为周期延拓到(-∞,+∞),并将f (x)展开成正弦级数得到s(x),延拓后f(x)在x1处连续,故. 221sf2111. 4221x1 ;

2210. 将下列各周期函数展开成为傅里叶级数,它们在一个周期内的表达式分别为: (1) fx1x22x1, 3x0,(2)f(x)

1, 0x3.解:(1) f (x)在(-∞,+∞)上连续,故其傅里叶级数在每一点都收敛于f (x),由于f (x)为偶函

数,有bn=0 (n=1,2,3,…)

a02fxdx41x2dxan2所以

1212120121212011, 6fxcos2nπxdx41x2cos2nπxdxn1212

nπn1,2,n11111fx212πn1n2(2) a0cos2nπx (-∞31310fxdx2x1dxdx1, 0333313nπxanfxcosdx33310nπx13nπx2x1cosdxcosdx 3333036n2211,n1,2,3,nπbn13nπxfxsindx33310nπx13nπx2x1sindxsindx

3033336n11,n1,2,nπ函

f(x)

x=3(2k+1)

k=0,±1,±2,…

间 (x

≠断

故,

16nπxnπxnn16fx2211cos1sin2n1nπ3nπ3k=0,±1,±2,…)

3(2k+1)

习题十二

1. 填空题:

11(1)级数(2)n的敛散性是 发散

n1n1nn)的敛散性是 收敛 (2)级数(n12n1(3)已知幂级数级数级数

na(x2)在x0处收敛,在x4处发散,则幂级数nn1a(x3)的处收敛域为 (1,5]

nnn1(4) 设函数f(x)x1(x)的傅里叶级数的和函数为S(x),则S(5)等于 1

(5)设函数

f(x)x(0x)的正弦函数

2bn1nsinnx的和函数

S(x),则当x(,2)时,S(x) (2x)2

2. 选择题:

(1) 正项级数

an1n收敛的充分条件是( C )。

A.C.an1n12n收敛B.(1)n1n1an收敛

(an2n1an)收敛D.(an12n1an)收敛(2)设级数

(1)n1an2条件收敛,则( D )。

A.an一定条件收敛n1B.an一定绝对收敛n1aC.n一定条件收敛n1naD.n一定绝对收敛2n1n

(3) 设函数f(x)在x0的某邻域内有一阶连续导数,且f(0)a,f(0)b,则级数

1n(1)f()条件收敛的充分条件是( A )。 nn1A.a0,b0B.a0,b0C.ab0D.a0,b0

liman0,(4)设数列an单调减少,

xnSnak(n1,2,)无界,则幂级数ak(x1)k1n1n的收敛域为( C )。

A.1,1B.1,1C.0,2x,D.0,2 0xan,

(5)设f(x)(xR)是以2为周期的周期函数,且f(x)2x,x2,bn为其傅里叶系数,则有( C ).

A a2n0,b2n0 B a2n0,b2n0 C a2n10,b2n10

 D a2n10,b2n10

3. 设an40tannxdx(n1,2,).

(1)证明anan211(n3,4,),并求级数(anan2)的和; n1n3n(2)证明级数

n1an收敛. n2n22n2证:(1)an40tanxtanxdx4secxtan0xdx4tann2xdx01an2, n1即有anan21(n3,4,),所以 n1n1(anan2)n3n13n(n1)1.3

(2)由已知an0n1,2,,注意到anan211(n3,4,),于是an, n1n11n23所以an11n3,4,3n(n1)n(n1)2,由于级数

收敛,从此由比较判

2n1别法知

n1an收敛. n(1)n4. 设a0为常数,讨论级数的收敛性,若收敛,指出是条件收敛还是绝对收敛. n1an1(1)n0,所以0a1时级数发散. 解:当0a1时,limn1an(1)n1n11lim1,此时级数为绝对收敛的. 当a1时,limnn1anna1ana5. 设an为曲线yx与yx为常数).

解:有题意可知annn1(n1,2,)所围的面积,讨论级数nan的收敛性(n110(xnxn1)dx111.n1n2(n1)(n2)

nan1lim1,由比较判别法知,级数nan与级数2有相同的敛散性. 因为n1n1n1nn2因此,当1时级数

nn1an收敛;当1时级数nan发散.

n16. 将函数f(x)x0ln(1t2)dt展开成关于x的幂级数,并指出其收敛域. t(1)n12nt,1t1,知 解:由ln(1t)nn12ln(1t2)(1)n12n1t,1t1,t0.tnn1

故逐项积分得

x0n1x(1)ln(1t2)(1)n12n2n1dttdtx,1x1.20tn2nn1n1

4n24n32nx的收敛域及和函数. 7. 求幂级数2n1n0解:(1)求收敛域。因为limnun1(x)x2,所以当x21时收敛。并且验证可知x1时

un(x)均发散,所以,收敛域为(1,1)。

4n24n32n2n122n22n(2)设S(x)xx(2n1)x 2n12n12n1n0n0n02令S1(x)x2n1xn0xn002n,S2(x)2n22nx, 2n1n02n1因为

0S1(t)dt2n1tdtxn01x2x(1x1) ,所以S1(x)2221x1x22n12'x,所以xS2(x)2x2n(1x1), 又因为xS2(x)22n11xn0n0所以

x0tS2(t)dt'21x1xdtln(1x1)xS(x)ln(1x1) ,所以201t21x1xx当x0时,S2(x)11xln,x0,S1(0)1,S2(0)2。 x1x1x211xln,x(1,0)(0,1)22S(x)所以 x1x(1x)x08. (1) 求幂级数

(n1)x2n0n的收敛域与和函数;

n1(2)求级数n的和.

n02解:(1)令f(x)2(n1)n02xn,1x1,则

x0f(x)(n1)xn0n1x(xn0n1)x(xn1)n0

xxx(),1x1,21x(1x)

上式两边关于x求导,可得f(x)21x,1x1.(1x)3

2111xn1(2)由(1)的结论知n(n1)nS()44(1x)3n0n02

1480.27

(1)n12n9. 求幂级数x的收敛域及和函数.

2n1n1xn110. 求幂级数的收敛域及和函数,并求数值级数的和. nn1n(n1)2n1n(n1)xn解:易知的收敛域为1,1.设其和函数为S(x),则S(0)0

n(n1)n1

11. 求幂级数

2n1n1(1)1n(2n1)x的收敛区间与和函数f(x). n1 解:因为lim(n1)(2n1)1n(2n1)1,所以当x21时,原级数绝对收敛,当

n(n1)(2n1)n(2n1)1x21时,原级数发散,因此原级数的收敛半径为1,收敛区间为(-1,1) (1)n12nx,x(1,1), 记S(x)2n(2n1)n1(1)n12n11(x)(x)(1)n1x2n2Sx,x(1,1),S,x(1,1),则2 1xn12n1n1,

 由于S(0)0,S(0)0,所以S(x)S(t)dt0x1dtarctanx,

01t2xxx12S(x)S(t)dtarctantdtxarctanxln(1x). 00 2 又

n12n(1)xn1x,x(1,1), 21x 从而f(x)2S(x)

xx22xarctanxln(1x),x(1,1). 221x1x12.(1)将函数f(x)xcosx展开成麦克劳林级数; (2)求数值级数

21111111的和. 262!104!146!x2n(1)(2n)!nx2x4解:(1)由cosx12!4!,可得

x4x8xcosxx12!4!2x4n(1)(2n)!n ,x(,).

x5x9x2!4!x4n1(1)(2n)!n(2)数将上述结果在0,1上积分得

x5x9x0xcosxdx02!4!121x4n1(1)(2n)!ndx 11111262!104!故有

11(1)(4n2)(2n)!n,

1111111262!104!146!13. 将函数fx1sin1 21xcosxdxsinx.002212x展开成x的幂级数. 22xxx121111fx2xx232x1x31x1x21n而1xnx1,11xn0xx2,2xn0212n11nnn11n1故fx1xx1nxnx1,13n032n02n014. 将函数f(x)=1x21n

0x展开成余弦级数,并求级数n11n2n1的和.

解:将f(x)作偶周期延拓,则有b0,n1,2,n

.

a0

22022(1x)dx21.3f(x)cosnxdx

a00

2cosnxdxx2cosnxdx000

2x2sinnx2xsinnx220xcosnxdxdx0000nn

22(1)n14(1)n1

.n2n2

2所以

a02(1)n1f(x)1xancosnx14cosnx.0x.22n13nn1令x0,有

(1)n1f(0)14cosnx23nn12

又f(0)1,所以

(1)n12.2n12n1

15. 设有方程xnnx10,其中n为正整数,证明此方程存在唯一正实根xn,并证明当

1时,级数xn收敛.

n111解:令fxxnnx1,则f01<0,f>0nn1所以方程xnnx10有正根xn<.又因为fxnxn1n,x>0n所以函数fx当x>0时单调递增,故方程xnnx1=0有唯一正根xn.n

111又由xn<,得xn<,而当>1时,级数收敛,从而xn收敛。nnn1nn1

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo0.cn 版权所有 湘ICP备2023017654号-2

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务