小学三年级数学趣味故事(四篇)小学三年级数学趣味故事(四篇)
小学三年级数学趣味故事篇一
在面的算式里,每个方框表示一个数字,不同方框表示的数字可以相同,也可以不同。请问,这6个方框表示的数的总和是多少?
在原式中,两个3位数的和等于1996。
一个3位数,不会超过999。两个3位数相加,最多最多只能等于1998。现在的和已经达到1996,离可能值只差一点点,把两个3位数挤到墙角,几乎没有转身的余地了。只有3种可能:
999+997=1996,
998+998=1996,
997+999=1996。
3种情形下,被加数和加数的各位数的和相同,都是52:
(9+9+9)+(9+9+7)=(9+9+8)+(9+9+8)=52。
所以,6个方框表示的数的和等于52。
小学三年级数学趣味故事篇二
小熊的妈妈生病了,为了能挣钱替妈妈治病,小熊每天天不亮就起床下河捕鱼,赶早市到菜场卖鱼。
一天,小熊刚摆好鱼摊,狐狸、黑狗和老狼就来了。小熊见有顾客光临,急忙招呼:买鱼吗,我这鱼刚捕来的,新鲜着呢!狐狸边翻弄着鱼边问:这么新鲜的鱼,多少钱一千克?小熊满脸堆笑:便宜了,四元一千克。老狼摇摇头:我老了,牙齿不行了,我只想买点鱼身。小熊面露难色:我把鱼身卖给你,鱼头、鱼尾卖给谁呢?狐狸甩甩尾巴道:是呀,这剩下的谁也不愿意买,不过,狼大叔牙不好,也只能吃点鱼肉。这样吧,我和黑狗牙好,咱俩一个买鱼头,一个买鱼尾,不就既帮了狼大叔,又帮了你熊老弟了吗?小熊一听直拍手,但仍有点迟疑:好
倒好,可价钱怎么定?狐狸眼珠一转,答道:鱼身2元1千克,鱼头、鱼尾各1元1千克,不正好是4元1千克吗?小熊在地上用小棍儿画了画,然后一拍大腿:好,就这么办!四人一齐动手,不一会儿就把鱼头、鱼尾、鱼身分好了,小熊一过秤,鱼身35千克70元;鱼头15千克15元,鱼尾10千克10元。老狼、狐狸和黑狗提着鱼,飞快地跑到林子里,把鱼头鱼身鱼尾配好,重新平分了,小熊在回家的路上,边走边想:我60千克鱼按4元1千克应卖240元,可怎么现在只卖了95元小熊怎么也理不出头绪来。
你知道这是怎么一回事吗?
小学三年级数学趣味故事篇三
有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。我得向上游划行几英里,他自言自语道,这里的鱼儿不愿上钩!
正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。
在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。
如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候?
由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,